Research

Adversarial Attack on Data Attribution
Xinhe Wang, 
Pingbang Hu, 
Junwei Deng, 
Jiaqi Ma
Jan 22nd 2025
ICLR 2025
#Trustworthy
#Data Attribution

We consider the adversarial attack on training data attribution methods.

arXiv
Poster
dattri: A Library for Efficient Data Attribution
Junwei Deng*, 
Ting-Wei Li*, 
Shiyuan Zhang, 
Yijun Pan, 
Hao Huang, 
Xinhe Wang, 
Pingbang Hu, 
Xingjian Zhang, 
Jiaqi Ma
Sep 26th 2024
NeurIPS 2024 D&B (Spotlight)
#Data Attribution
#Library

We developed a efficient library for data attribution, aiming to streamline the development of data attribution algorithms.

arXiv
Poster
GitHub
Most Influential Subset Selection: Challenges, Promises, and Beyond
Yuzheng Hu, 
Pingbang Hu, 
Han Zhao, 
Jiaqi Ma
Sep 25th 2024
NeurIPS 2024
#Trustworthy
#Data Attribution
#Optimization

We provide a comprehensive study of the common practices in the Most Influential Subset Selection (MISS) problem.

arXiv
Poster
GitHub
Pseudo-Non-Linear Data Augmentation via Energy Minimization
Pingbang Hu, 
Mahito Sugiyama
Sep 7th 2024
In Submission
#Information Geometry
#Data Augmentation

We propose a new non-linear data augmentation framework powered by information geometry.

arXiv
GitHub
Towards Reliable Empirical Machine Unlearning Evaluation: A Game-Theoretic View
Yiwen Tu*, 
Pingbang Hu*, 
Jiaqi W. Ma
Apr 17th 2024
In Submission
#Trustworthy
#Data Attribution
#Unlearning

We design the first efficient machine unlearning evaluation metric with provable guarantees.

arXiv
Travel the Same Path: A Novel TSP Solving Strategy
Pingbang Hu
Oct 12th 2022
Side Project
#Optimization

Exploring a novel approach to exactly solve an NP-hard combinatorial optimization problem by using imitation learning.

arXiv
GitHub
Last Updated on May 13th 2025