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Chapter 1

Introduction

Lecture 1: Overview
21 Jan. 9:30In this course, we will consider undirected, unweighted, and finite graph G = (V,E). Given a graph

G = (V,E), for any x, y ∈ V , we define ωxy := 1(x,y)∈E as the indicator of (x, y) in E.

1.1 Structure1

One of the fundamental structures in a graph is the connected component, where we now define.

Definition 1.1.1 (Connected). Given a graph G = (V,E), we say x, y ∈ V is connected, denoted as
x ↔ y, if there exists a path x = v1, . . . , vk = y such that ωvivi+1

= 1 for all 1 ≤ i ≤ k − 1.

It’s easy to see that ↔ is an equivalent relation, hence, one can define the so-called connected
component, which is an equivalent class of G with ↔.

Definition 1.1.2 (Connected component). Given a graph G, a connected component C ⊆ V is a
maximala size subset of V such that for all x, y ∈ C, x ↔ y.

aNote the wording: it’s not equivalent to maximum.

Notation. For a particular vertex v ∈ V , we define C(v,G) := {u | u ↔ v in G} as the connected
component containing v. If G is realized, we simply write C(v).

Connected component is an example of structure. We list some common structures below:

Definition 1.1.3 (Triangle). A triangle (v1, v2, v3) in a graph G = (V,E) is such that (v1, v2), (v2, v3),
and (v3, v1) are in E.

Definition 1.1.4 (Cycle). A n-cycle (v1, . . . , vn) in a graph G = (V,E) is such that (vi, vi+1) and
(vk, v0) are in E.

Definition 1.1.5 (Clique). A n-clique Kn ⊆ V in a graph G = (V,E) is such that for every vi, vj ∈
Kn, (vi, vj) ∈ E.

Example. It’s clear that a triangle is just a 3-cycle while also a 3-clique.

A central problem we will be asking is the following:
1Later (after this section), we will not reference back to definitions defined here due to their elementary nature.
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Lecture 1: Overview

Problem (Subgraph count). Whether a graph contains a certain structure; if yes, how many?

1.2 Random Graph and Random Graph Process
We are interested in certain graph models where when the number of vertices grows, some structures
emerge. The most famous (and simple) random graph model is the Erdős-Rényi random graph model.

Definition 1.2.1 (Erdős-Rényi random graph). The Erdős-Rényi random graph model, denoted as
G(n, p) or ER(n, p), is a random graph generated on n vertices such that any two vertices are
connected with probability p ∈ (0, 1) independently.

Note. There are lots of independence and symmetry, leading to closed forms for many calculations.

To get a less restrictive model, one can also consider inhomogeneous model, where we let pxy differ
for different pairs of (x, y) ∈ V × V . On the other hand, to relax edge independence, the so-called
exponential random graph model exists.

Remark. These model all have light-tail. There are also models with heavy tail behavior, e.g.,
random graph with specified degree distribution, and preferential attachment model.

It’s natural to view these random graph model by a random sequence of graphs, which we call graph
process. People are interested in several optimization problems of such a graph process.

Example (Optimization on graph process). Given a graph process, what’s the (expected) number of
the largest cycle, or what’s the minimum spanning tree, or some maximum weight problem.

On the other hand, we can also consider another layer of randomness, where we are given a fixed
graph, and consider stochastic processes on this graph.

Example. Infection model on a social network, or a growth process.

Some other more advanced topics include Gibbs measures, spin model (Ising model and its general-
ization Potts model), and spin glass model.

CHAPTER 1. INTRODUCTION 3



Chapter 2

Erdős-Rényi Random Graph

In this chapter, we first look at the simplest random graph model, the Erdős-Rényi random graph.

As previously seen (Erdős-Rényi random graph). Let V = [n] := {1, . . . , n} and p ∈ [0, 1]. For every
1 ≤ i < j ≤ n, we let ωij

i.i.d.∼ Ber(p), which induces E := {(i, j) | ωij = 1, 1 ≤ i < j ≤ n}.

Due to the independence and the simplicity, we get several immediate results.

Claim. The number of edges converges in distribution to a standard normal, in particular,

|E| −
(
n
2

)
p√(

n
2

)
p(1− p)

D→ N (0, 1),

if and only if
(
n
2

)
p(1− p) → ∞. As a corollary, we have |E|/

(
n
2

)
p ≈ 1.

Proof. We see that |E| =
∑

1≤i<j≤n ωij ∼ Bin(
(
n
2

)
, p), hence, E[|E|] =

(
n
2

)
p = n(n− 1)p/2. Then,

the result follows directly from the central limit theorem. ⊛

Now it’s a good time to bring up another random graph model, ER(n,m), where we sample a graph
with n vertices and m edges uniformly. This is actually the original Erdős-Rényi random graph model.

Remark. If m ≈
(
n
2

)
p, the results often transfer between ER(n, p) and ER(n,m).

2.1 Density and Phase Transition

2.1.1 Dense and Sparse Graph1

We now introduce the concept of dense and sparse graph, which is decided by the parameter |E|/
(
n
2

)
.

Definition. Consider a graph G = (V,E) with |V | = n and |E| = m.

Definition 2.1.1 (Dense graph). G is dense if there exists a constant ϵ > 0 such that m/
(
n
2

)
> ϵ.

Definition 2.1.2 (Sparse graph). G is sparse if the average degree is constant, i.e., m = O(n).

Let’s first observe an interesting property for the Erdős-Rényi random graph model. Note that the
typical degree of the Erdős-Rényi random graph is some constant since for ER(n, p),

1

|V |
∑
v∈V

deg(v) =
2|E|
|V |

≈ 2n(n− 1)

2

p

n
= (n− 1)p.

1Again, since sparse/dense are so elementary, we will not reference back to definitions defined here.
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Lecture 1: Overview

Note. Regime hence depends on λ := np for some λ. When λ ∈ (0,∞), we are in the sparse regime.

In particular, when λ ∈ (0,∞), the degree of a particular vertex follows Bin(n−1, p) = Bin(n−1, λ/n).

Claim. If λ ∈ (0,∞), Bin(n− 1, λ/n)
D→ Pois(λ) as n → ∞.

Proof. We see this in a straightforward way: for any k, X ∼ Bin(n− 1, λ/n) has a pmf

Pr(X = k) =

(
n− 1

k

)
·
(
λ

n

)k

·
(
1− λ

n

)n−1−k

→ λk

k!
e−λ,

which is the pmf of Pois(λ). Hence, by definition, Bin(n − 1, λ/n)
D→ Pois(λ). Another proof is

based on the total variational distance dTV.

As previously seen (Total variational distance). For the discrete case, given two discrete prob-
ability distributions p, r with a finite support Ω,

dTV((pk)k∈Ω, (rk)k∈Ω) :=
1

2

∑
k∈Ω

|pk − rk|.

Now, consider the empirical degree distribution defined as d(n) := 1
n

∑
v δdeg(v). We see that

dTV

(
d(n),Pois(λ)

)
=

1

2

n∑
k=0

∣∣∣∣ |{v | deg(v) = k}|
n

− e−λλk

k!

∣∣∣∣ ,
and by Jensen’s inequality,

E
[
dTV

(
p(n),Pois(λ)

)]
≤ 1

2

n∑
k=0

√√√√E

[(
|{v | deg(v) = k}|

n
− e−λλk

k!

)2
]
≈
√

pk
n

= O

(
1√
n

)
,

where pk = e−λλk/k!. ⊛

The above gives a distance-one neighborhood characterization of ER(n, p). However, this actually
gives a higher-level picture on larger neighborhoods, in particular, the connected component.

Notation. Given a graph G, let Cmaxi denotes the ith largest connected component in G. For
convenient, we use Cmax to denote Cmax1 when it’s clear from the context.

2.1.2 Phase Transition of Component Size
Our goal in this section is to prove the following theorem about the components size in ER(n, λ/n):

Theorem 2.1.1. Consider the Erdős-Rényi random graph model ER(n, λ/n) for some λ > 0.

(a) If λ < 1, the graph is disconnected with high probability such that |Cmax1
| = Θp(log n). In

particular, if a(λ− 1− log λ) > 1, as n → ∞, we have Pr (|Cmax1
| ≥ a log n) → 0.

(b) If λ > 1, 1
n |Cmax1 | converges to a constant, i.e., there exists a giant component. Moreover,

Cmax2 has size of O(log n).

(c) At λ = 1, the random vector 1
n2/3 (|Cmax1

|, |Cmax2
|, . . . ) converges in distribution to a non-

trivial limit.

Theorem 2.1.1 says that in the sparse regime, there is a phase transition at λ = 1. When λ < 1, there
will not exist large component; if λ > 1, the largest component is of constant fractional of the entire
graph, and at λ = 1, it’s something in between.

CHAPTER 2. ERDŐS-RÉNYI RANDOM GRAPH 5



Lecture 2: Erdős-Rényi Random Graph Model

Intuition. Consider the extremely sparse regime where λ < 1. We give a heuristic argument of why
there can’t exist a large component. The neighborhood structure of some vertex v, which should
be tree-like, at least locally. This is because, for any k ≥ 2, the expected number of cycles of length
k in this structure is (

n

k

)
· k! ·

(
λ

n

)k

≈ nk · λ
k

nk
= λk,

which implies that when λ < 1,

n∑
k=2

E[#cycle of length k] ≤ 1

1− λ
. (2.1)

Hence, in this regime, for a random vertex v, up to any finite distance k, we will only see few cycles.

v

u

1-neighborhood

2-neighborhood

3-neighborhood

Formally, by viewing the neighborhood structure as a branching process, one can bound its size.

Lecture 2: Erdős-Rényi Random Graph Model
23 Jan. 9:30As previously seen. We mainly focus on the following three types of questions for both the degree

and components:

1. Typical (local) behavior: single/multiple points view.

2. Global behavior: empirical behavior.

3. Extremal behavior: maxima or minima of various objects.

Toward proving Theorem 2.1.1 (a), we will need the following idea:

Definition 2.1.3 (Stochastic domination). Let X and Y be two real-valued random variables. We
say that X is stochastically dominated by Y , denoted as X ⪯ Y , if there exists a coupling of X,Y
such that X ≤ Y .

The reason why stochastic domination is useful is because of the following:

Exercise. X ⪯ Y if and only if Pr(X > t) ≤ Pr(Y > t) for all t ∈ R.

Here we give some elementary examples of stochastic domination.

Example. Bin(n, p) ⪯ Bin(m, p) for m ≥ n.

Proof. Since we have Bin(m, p)
D
= Bin(n, p) + Bin(m− n, p). ⊛

Example. Ber(p) ⪯ Ber(r) if p ≤ r.

Example. Ber(p) ⪯ Pois(θ) by letting θe−θ = p. More generally, we just need 1− p ≥ e−θ.

CHAPTER 2. ERDŐS-RÉNYI RANDOM GRAPH 6



Lecture 2: Erdős-Rényi Random Graph Model

Proof. This follows from an application of the above exercise. ⊛

As we will soon see, by using stochastic domination, one can provide a nice bound for proving
Theorem 2.1.1 easily.

Intuition. We will often construct objects that are stochastically dominating the object of interest,
such that bounds on the dominating quantity imply bounds on the desired quantities in the graph.

2.2 Degree in Sparse Regime
As a warm-up toward proving Theorem 2.1.1 (a), let’s first look at an easier problem: the degree.

2.2.1 Single Point Viewpoint
When p = λ/n, recall what we have proven.

As previously seen. The expected degree of any vertex v is approximately λ ∈ (0,∞). We also have
degGn

(v)
D→ Pois(λ) as n → ∞ where Gn ∼ ER(n, λ/n).

2.2.2 Joint Distribution
This is for a single point, what about their joint behaviors?

Claim. For any finite k, (deg(1),deg(2), . . . ,deg(k)) D→ (Pois(λ),Pois(λ), . . . ,Pois(λ)).

Proof. Consider any two vertices i, j, we see that

deg(i) = 1(i,j)∈E +
∑
v ̸=j

1(i,v)∈E and deg(j) = 1(i,j)∈E +
∑
v ̸=i

1(j,v)∈E .

Note that the remaining parts,
∑

v ̸=j 1(i,v)∈E and
∑

v ̸=i 1(j,v)∈E , are independent. The same argu-
ment generalizes to any fixed k vertices.

Moreover, for any fixed k, the number of edges among these k vertices follows Bin(
(
k
2

)
, λ/n),

which goes to 0 as n → ∞. Hence, only the remaining parts in the above degree expression survive,
which are independent. As k is finite, the remaining parts again follow Pois(λ). ⊛

Intuition. Since the graph is sparse, for any fixed, finite k, n → ∞, independence emerges.

The above is for finite k, serving as the multiple points view.

2.2.3 Extremal Viewpoint
For a global view of the degree distribution, recall the following:

As previously seen. Consider the empirical distribution of degree, defined as 1
n

∑n
v=1 δdeg(v), con-

verges to Pois(λ) in the total variation distance.

The last question is the extremal behavior, where we are interested in either bounding or approxi-
mating the maximum degree degmax,n := maxv∈V deg(v) for G ∼ ER(n, p).

Proposition 2.2.1. Consider the Erdős-Rényi random graph model ER(n, λ/n) for λ ∈ (0,∞). Then
for all ϵ > 0, as n → ∞, we have

Pr

(
degmax,n ≥ (1 + ϵ)

log n

log log n

)
→ 0.

CHAPTER 2. ERDŐS-RÉNYI RANDOM GRAPH 7



Lecture 2: Erdős-Rényi Random Graph Model

Proof. By a simple union bound, for any x ∈ R, we have

Pr

(
max
v∈[n]

deg(v) ≥ x

)
= Pr

(
n⋃

v=1

{deg(v) ≥ x}

)
≤ nPr(deg(1) ≥ x).

Now we focus on Pr(deg(1) ≥ x). With the Chernoff-Cramér method, for any θ > 0, we have

Pr(deg(1) ≥ x) ≤ e−θxE[eθ deg(1)]

= e−θx ·
(
1− λ

n
+

λ

n
eθ
)n−1

≤ exp

(
−θx+ (n− 1)

λ

n
(eθ − 1)

)
≤ exp

(
−θx+ λ(eθ − 1)

)
. (1 + t ≤ et)

Optimizing θ, we see that θ0 = ln(x/λ) minimizes the above, and it’s positive if x > λ. In the end,
we have an upper bound exp(−x ln(x/λ) + x− λ). Plugging it back, we have

Pr

(
max
v∈[n]

deg(v) ≥ x

)
≤ n exp

(
−x ln

x

λ
+ x− λ

)
.

By choosing x = (1 + ϵ) log n/ log log n, the upper bound goes to 0 as n → ∞. ■

Remark. The proof technique of Proposition 2.2.1 will be used extensively in this course.

Let’s summarize all results we have for degree so far in the following:

Theorem 2.2.1 (Degree of sparse Erdős-Rényi graph). Let G ∼ ER(n, λ/n) for some λ ∈ (0,∞).

(a) deg(1)
D→ Pois(λ) as n → ∞.

(b) For any finite k, (deg(1), . . . ,deg(k)) D→ Pois(λ)⊗ · · · ⊗ Pois(λ) as n → ∞.a

(c) The empirical degree distribution 1
n

∑n
v=1 δdeg(v)

D→ Pois(λ) as n → ∞.

(d) For any ϵ > 0, as n → ∞, we have

Pr

(
degmax,n ≥ (1 + ϵ)

log n

log log n

)
→ 0.

aI.e., the joint distribution of k many i.i.d. Pois(λ).

2.3 Size of Connected Component in Sparse Regime
Getting back to Theorem 2.1.1, we start by consider the subcritical regime, i.e., when λ < 1.

2.3.1 Subcritical Regime λ < 1

We start from a similar technique and argument from Theorem 2.2.1, without loss of generality we
consider |C(1)|. To see how to compute the size of a connected component, consider the breadth-first
search algorithm starting from vertex 1.

Intuition. We see that the induced distance tree T is in some sense dominated by the tree T where
we do not mark the already explored vertices.

The latter is considered as a Galton-Watson branching process with progeny Bin(n−1, p), denoted as
GWBP(Bin(n − 1, p)). The crucial observation is that, the size of this branching process stochastically
dominates the size of C(1). We can now see some intuition of how to prove Theorem 2.1.1 (a), where we
aim to show that Pr(|Cmax1 | ≥ a log n) → 0 as n → ∞ if a(λ− 1− log λ) > 1.

CHAPTER 2. ERDŐS-RÉNYI RANDOM GRAPH 8
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Lecture 3: Component Size in Subcritical Regime

Intuition (Proof intuition of Theorem 2.1.1 (a)). For any t, as we discussed above, we will have
Pr(|C(1)| ≥ t) ≤ Pr(|GWBP(Bin(n − 1, λ/n))| ≥ t). Next, we observe that we can maintain the
number of vertices in the queue when we do the breadth-first search, we see that the tree T can be
(uniquely) embedded in a sequence.

Formally, let (ui) be the sequence of vertices ordered in terms of the order of exploration. Then,
consider the size of the tree T , which is the length of the sequence (sn) that records the number of
vertices in the queue,a where s0 = 1, sk = sk−1 +(xk − 1) such that xk is the number of children of
uk in T . It is easy to verify that this embedding is indeed a bijection. Finally, we see that the size
of the tree is the hitting time to 0, i.e., |T | = inf{n ≥ 1 | sn = 0}.

With the above two ingredients, consider the branching process. In this case, the embedded
sequence has i.i.d. increments, and is therefore a random walk given by s0 = 1, sk = sk−1 +Xk − 1
with Xk ∼ Bin(n− 1, p) for all k. The final observation is that when λ < 1, the above process has
a negative drift, hence the hitting time is almost surely finite and can be bounded.

aNote that the sequence stops whenever the exploration stops, i.e., an entire connected component is explored.

Lecture 3: Component Size in Subcritical Regime
28 Jan. 9:30As previously seen. Consider ER(n, λ/n) for some λ > 0. As in Theorem 2.2.1, we have proved:

(a) deg(1)
D→ Pois(λ) and (b) (deg(1), . . . ,deg(k))

D→ Pois(λ) ⊗ · · · ⊗ Pois(λ) as n → ∞. (c) Also,
the empirical distribution 1

n

∑n
v=1 δdeg(v)

D→ Pois(λ). (d) Finally, we have a maximum degree bound
such that for any ϵ > 0, Pr(degmax,n) ≥ (1 + ϵ) log n/ log log n.

With the build-up from the previous lecture, we are almost ready to prove Theorem 2.1.1 (a). How-
ever, as noted above, it’s expected that the result will depend on Pois(λ) in various ways. Hence, we
note the following results from standard probability analysis.

Exercise. Let X1, . . . , Xr
i.i.d.∼ Pois(λ). Prove the following.

(a) As n → ∞, we have maxi=1,...,n Xi log log n/ log n
p→ 1.

(b) Moreover, we can show that as n → ∞, maxi=1,...,n Xi ∈ {mn,mn + 1} with probability
converging to 1 for some integer mn satisfying mn · log log n/ log n → 1.

(c) Similarly, we can prove the above two by replacing maxi=1,...,n Xi with degmax,n.

Answer. We quickly sketch the proof for degmax,n, specifically for the lower bound. Consider a
bipartition (V1, V2) of V , each with n/2 vertices. Then, for any v ∈ V1, degV2

(v) lower bounds
degmax,n. Analyzing degV2

(v) turns out to be manageable. ⊛

Now, we’re ready to prove Theorem 2.1.1 (a).

Lemma 2.3.1 (Component of subcritical Erdős-Rényi graph). Let G ∼ ER(n, λ/n) with λ < 1.

(a) As n → ∞, C(1) D→ BP(Pois(λ)). In particular, |C(1)| D→ |Tλ| where Tλ ∼ BP(Pois(λ)).

(b) For any finite k, (C(1), . . . , C(k)) D→ Tλ ⊗ · · · ⊗ Tλ as n → ∞, where Tλ ∼ BP(Pois(λ)).

(c) The empirical distribution of components converges weakly to BP(Pois(λ)) as n → ∞.

(d) |Cmax,n| ≤ (1/Iλ + ϵ) · log n as n → ∞ with high probability where Iλ = λ− 1− log λ > 0.a

aNote that Iλ equals to 0 at 1, and diverges to ∞ at both +∞ and −∞.

Proof. Let’s prove (a) first. Last time, we have shown that |Cn(1)| ⪯ |BP(Bin(n−1, p))| for p = λ/n.
To show that in general, C(1) D→ BP(Pois(λ)), we need to compute the pmf of C(1). Obviously, the
support of the distribution of C(1) is on the set of connected rooted graphs G′ = (V ′, E′). Suppose

CHAPTER 2. ERDŐS-RÉNYI RANDOM GRAPH 9



Lecture 3: Component Size in Subcritical Regime

G′ is not a tree such that |V ′| = k and |E′| = d ≥ k. By a simple counting argument, we have

Pr(Cn(1) = G′) =

(
λ

n

)d(
1− λ

n

)k(n−k)+(k2)−d

·
(
n− 1

k − 1

)
f(G′) → 0,

where f(G) is the number of automorphisms of G, which is finite for any fixed G′. Hence, we see
that only when k = d− 1, this probability is not 0. That is to say, in the limit, the component will
be a tree. In fact, with the same calculation, we have the following.

Claim (Borel-Tenner distribution). For λ ≤ 1, and for k ≥ 1, we have

Pr(|Tλ| = k) = e−λk (λk)
k−1

k!
.

Moreover, Pr(Cn(1) = T ) → Pr(BP(Pois(λ)) = T ) for all rooted finite tree T .

Proof. For a leveled tree T of k vertices with k − 1 edges,a

Pr(C(1) = T ) =

(
λ

n

)k−1

·
(
1− λ

n

)k(n−1)+(k2)−(k−1)

·
(
n− 1

k − 1

)
→ λk−1

(k − 1)!
e−λk.

From Cayley’s formula, the number of leveled trees on k nodes is kk−2, proving the claim. ⊛

aNote that we don’t need f(T ) since we’re considering leveled tree, which is already labeled, making it
unique (in terms of automorphisms). In some sense f(T ) is handled by the Cayley’s formula below.

We omit (b) and (c) since they can be easily shown. To prove (d), we have

Pr(|Cmax,n| ≥ t) ≤ n · Pr(|Cn(1)| ≥ t) ≤ n · Pr(|BP(Bin(n, λ/n))| ≥ t).

Recall our algorithmic notation:

As previously seen. We denote the set of active vertices as At at time t, and At := |At|.

Specifically, we have A0 = |A0| = 1, A1 = |A1| = X1+1−1 = A0+(X1−1), A2 = A1+(X2−1),
etc., where Xi

i.i.d.∼ Bin(n, λ/n). Then, |BP(Bin(n, λ/n))| is the hitting time at 0, H{0} = inf{t ≥
1 | At = 0}. Hence, we have Pr(|Cn(1)| > t) ≤ Pr(At ≥ 1), where At = 1+(X1−1)+ · · ·+(Xt−1).
Combining the above, for all θ > 0,

Pr(|Cmax,n| ≥ t) ≤ n · Pr

(
t∑

i=1

(Xi − 1) ≥ 0

)

≤ n
(
E[eθ(X1−1)]

)t
= n

(
e−θ

(
1− λ

n
+

λ

n
eθ
)n)t

≤ n exp
(
t(−θ + λ(eθ − 1))

)
Minimizing over θ, we have λeθ = 1, hence θ = log 1/λ > 0, which gives

n exp(−t(− log λ− 1 + λ)) =: n exp(−tIλ) = exp(log n− tIλ)

By taking t = (1/Iλ + ϵ) log n, the probability goes to 0, proving the result. ■

Remark. From (b), for λ < 1 and any k ≥ 1, |Cmax,k|/ log n
D→ 1/Iλ as n → ∞.

Note. We note that for (a), we can also prove it by observing that in the exploration tree, each
vertex has Bin(n− 1− c, p) children where c is some constant depending on the same level. Hence,
as long as we’re considering a fixed level neighborhood, everything converges to Pois(λ). In all, for
any finite connected rooted tree T , we have Pr(C(1) = T ) → Pr(BP(Pois(λ)) = T ).
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2.3.2 Supercritical Regime λ > 1

Next, we consider the supercritical regime when λ > 1. Specifically, we want to show Theorem 2.1.1 (b).
This is proved in Lemma 2.3.2 below.

Lemma 2.3.2 (Component of supercritical Erdős-Rényi graph). Let G ∼ ER(n, λ/n) with λ > 1.

(a) As n → ∞, |Cmax1,n|/n
p→ ζλ where ζλ = Pr(BP(Pois(λ)) survives forever).

(b) As n → ∞, |Cmax2,n|/ log n
p→ 1/Iλ where Iλ = λ− 1− log λ.

(c) Outside Cmax1,n, the graph looks like ER(m,µ/m) for some m ≈ n(1− ζλ) with µ < 1.

To prove Lemma 2.3.2, we divide it into three steps. Fix k = kn ≈ A log n for some large A. Define
Z≥kn

:=
∑n

v=1 1|Cn(v)|≥kn
as the number of vertices that has a component size greater than kn. Then:

(i) E[Z≥kn
] ≈ n · ζλ + o(n1−ϵ) and Var[Z≥kn

] ≪ (E[Z≥kn
])2. By using the second-moment method to

control Pr(Z≥kn
= 0), e.g., Chebyshev’s inequality, we have a concentration bound.

(ii) Pr(B log n ≤ |C(1)| ≤ an) → 0 for some B > 0 and for any ζλ > a, i.e., either the component is
small or large.

(iii) Z≥kn
≈ |Cmax,n|. Since Z≥kn

=
∑n

v=1 1|C(v)|≥kn
=
∑

v : |C(v)|≥kn
|C(v)|.

Now, to analyze Z≥kn
, we need to consider the exploration algorithm again. However, for convenience,

we will now maintain three sets (A,U ,R), corresponding to active, unexplored, and already explored set.

Intuition. We see that:

• At time 0, A0 = {1}, U0 = {2, . . . , n}, R0 = ∅ with A0 = 1, U0 = n− 1, R0 = 0.

• At time 1, A1 = A0 +Bin(U0, p)− 1, U1 = U0 − Bin(U0, p)− 1, R1 = 1.

• At time 2, A2 = A1 +Bin(U1, p)− 1, U2 = U1 − Bin(U1, p), and R2 = 2.

• In general, At+1 −At
D∼ Bin(Ut, p)− 1, Ut+1 −Ut = Bin(Ut, p), and Rt+1 = t+1 for all t ≥ 1.

Eventually, the above (A,U,R) structure embeds the graph. Then, we can simply look at Rt, and
look at the parts whenever it hits 0 to determine the components.

Lecture 4: Component Size in Supercritical Regime
30 Jan. 9:30Let’s first simplify the notations. At time t, we choose it ∈ At, and let Ct+1 = Children(it,Ut). Then,

At+1 = (At \ {it}) ∪ Ct+1, Ut+1 = Ut \ Ct+1, Rt+1 = Rt ∪ {it},

where A0 = {1}, U0 = [n] \ A0, and R0 = ∅. Let ξt+1 := |Ct+1| ∼ Bin(Ut, p) where p = λ/n, then

At+1 = At − 1 + ξt+1, Ut+1 = Ut − ξt+1 ∼ Bin(Ut, 1− p), Rt+1 = Rt + 1 = t+ 1.

Claim. For all t ≥ 0, Ut ∼ Bin(U0, (1−p)t) = Bin(n−1, (1−p)t). In particular, At = n−Ut−Rt =
n− t− Ut with

E[At] = n− t− (n− 1) · (1− p)t = (n− 1)
[
1− (1− λ/n)

t
]
− t+ 1 ∼= n

(
1− e−λ· t

n − t/n
)

and Var[At] = (n− 1)(1− p)t · [1− (1− p)t] ≈ λte−λt/n.

Let fλ(x) = 1− e−λx − x, hence, E[At] ∼= nfλ(t/n). Also, let ζλ > 0 be the unique positive solution
of fλ(x) = 0, where one can easily check that when λ > 1, f(x) = 0 for x > 0 has a unique solution.
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Intuition. Since Var[At] < (E[At])
2, so At ̸= 0 with high probability away from t = 0 and t = ζλ.

We prove that this is indeed the case, i.e., there are no intermediate clusters.

Lemma 2.3.3. When λ > 1 and 0 < t < nζλ, Pr(At = 0) ≤ exp
(
−t · Ig(t/n)

)
a where g(x) = 1−e−λx

x .

aRecall that we define Ix = x− 1− log x.

Proof. We see that

Pr(At = 0) = Pr(n− 1− Ut = t− 1)

≤ Pr(Bin(n− 1, 1− (1− p)t) ≤ t− 1) (n− 1− Ut ∼ Bin(n− 1, 1− (1− p)t))

≤ Pr(Bin(n− 1, 1− e−pt) ≤ t− 1) (1− p ≤ e−p)

≤ Pr(Bin(n, 1− e−pt) ≤ t)

≤ inf
θ>0

eθt ·
[
E[e−θ·Ber(1−e−pt)]

]n
= inf

θ>0
eθt ·

[
1− (1− e−θ)(1− e−pt)

]n
≤ inf

θ>0
exp

(
n · θt

n
− n(1− e−θ)(1− e−

λt
n )

)
= inf

θ>0
exp
(
n · (θa− (1− e−θ)(1− e−λa))

)
,

where we let a := t/n. Setting a := e−θ · (1 − e−λa) will minimize the above, i.e., eθ = 1−e−λa

a .
When a ∈ [0, c) for some c, we can find θ > 0 since f(x) = 1−e−λx−x = x( 1−eλx

x −1). Specifically,
we want 0 < a = t/n < ζλ, where ζλ > 0 is the solution of 1− e−λζλ = ζλ. With such a, we have

Pr(At = 0) ≤ exp
(
nθa− n(1− e−λa) + na

)
= exp(−t(g(a)− 1− ln g(a))) = exp(−t(g(t/n)− 1− ln g(t/n))) = exp

(
−tIg(t/n)

)
,

where ln g(a) = θ since eθ = g(a) = 1−e−λa

a . ■

From Lemma 2.3.3, the following is immediate.

Corollary 2.3.1. When λ > 1 and t/n ≤ α < ζλ, Pr(At = 0) ≤ e−tc(α) where c(α) := Ig(α).

Proof. Since g′(x) = e−λx

x2 (1+λx− eλx) < 0 when x > 0, we have 1 < g(α) ≤ g(t/n), which implies
Ig(α) ≤ Ig(t/n). The first result then follows from Lemma 2.3.3. ■

From Corollary 2.3.1, the following is immediate.

Corollary 2.3.2. When λ > 1 and α < ζλ, there is some k > 0 such that

Pr(∃t : k log n ≤ t ≤ αn such that At = 0) ≤ n−kc(α)

1− e−c(α)
.

By using a union bound, Corollary 2.3.2 leads to the following key lemma.

Lemma 2.3.4. When λ > 1 and α < ζλ, as k > 1/c(α), as n → ∞,

Pr(∃v ∈ [n] : k log n ≤ |C(v)| ≤ αn) ≤ nPr(k log n ≤ |C(1)| ≤ αn) ≲ n1−kc(α) → 0.

Remark. Lemma 2.3.4 basically proves that when λ > 1, if a cluster survives after some initial size
(k log n), it’ll stay alive until it reaches a size of a constant fraction of n with high probability.

Now, we just need to worry about the size of Cmax. To do this, define a random variable that counts
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the number of vertices having a small component:

Z≤kn
:=
∑
v∈[n]

1|C(v)|≤kn
,

where we let kn := k log n.

Lemma 2.3.5. When λ > 1, |Z≤kn − n(1− ζλ)| ≤ n1/2+ϵ with high probability for all ϵ > 0.

Proof. Consider using mean control as our primary tool. We see that

E[Z≤kn
] = nPr(|C(1)| ≤ kn)

= nPr(|BP(Bin(n− 1, p))| ≤ kn) +O(kn · p)

= nPr(|BP(Pois(λ))| ≤ kn) +O(kn · p)

= n(1− Pr(|Tλ| = ∞)︸ ︷︷ ︸
ζλ

−Pr(kn < |Tλ| < ∞)︸ ︷︷ ︸
e−kn·Iλ

) +O

(
λ log n

n

)
= n(1− ζλ) +O

(
log n

n

)
.

For the variance, we have

Var[Z≤kn
] =

n∑
u,v=1

Cov[1|C(1)|≤kn
,1|C(u)|≤kn

]

= nE

[
1|C(1)|≤kn

n∑
u=1

(
1|C(u)|≤kn

− Pr(|C(1)| ≤ kn)
)]

= nE

[
1|C(1)|≤kn

n∑
u=1

11↔u

(
1|C(u)|≤kn

− Pr(|C(1)| ≤ kn)
)]

+ nE

[
1|C(1)|≤kn

n∑
u=1

11̸↔u

(
1|C(u)|≤kn

− Pr(|C(1)| ≤ kn)
)]

.

Let’s first look at the first term, where we have

E

[
1|C(1)|≤kn

n∑
u=1

11↔u

(
1|C(u)|≤kn

− Pr(|C(1)| ≤ kn)
)]

= E

[
1|C(1)|≤kn

n∑
u=1

11↔u(1− Pr(|C(1)| ≤ kn))

]
= E

[
1|C(1)|≤kn

|C(1)|
]
(1− Pr(|C(1)| ≤ kn)) ≤ kn.

As for the second term, we see that

E

[
1|C(1)|≤kn

n∑
u=1

11̸↔u

(
1|C(u)|≤kn

− Pr(|C(1)| ≤ kn)
)]

=

n∑
u=2

kn∑
ℓ=1

Pr(|C(1)| = ℓ) · Pr(1 ̸↔ u | |C(1)| = ℓ)

·
(
Pr(|C(u)| ≤ kn | 1 ̸↔ u, |C(1)| = ℓ)− Pr(|C(1)| ≤ kn)

)
≤

n∑
u=2

kn∑
ℓ=1

Pr(|C(1)| = ℓ) · 1 · ℓkn
λ

n

=
(n− 1)knλ

n
E[1|C(1)|≤kn

|C(1)|] ≤ λk2n,

where the first inequality comes from the fact that when |C(1)| = ℓ and 1 ̸↔ u, |C(u)| follows
the law of |C(1)| in ER(n − ℓ, p). Then, we couple ER(n − ℓ, p) and ER(n, p) by adding vertices
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{n− ℓ+ 1, . . . , n} of ER(n− ℓ, p) and missing edges (sampled i.i.d. from Ber(p)). Hence,

Pr(|C(u)| ≤ kn | 1 ̸↔ u, |C(1)| = ℓ)− Pr(|C(1)| ≤ kn)

= Pr(|C(1)| ≤ kn in ER(n− ℓ, p))− Pr(|C(1)| ≤ kn in ER(n, p))

= Pr(|C(1)| ≤ kn in ER(n− ℓ, p) and |C(1)| > kn in ER(n, p))

≤ Pr(∃u ∈ {n− ℓ+ 1, . . . , n} : 1 ↔ u) ≤ ℓknp,

since there are at most ℓkn many edges between C(1) in ER(n − ℓ, p) and {n − ℓ + 1, . . . , n} in
ER(n, p). Putting everything together, we have, Var[Z≤kn

] ≤ n(k log n+ λk2 log2 n), which gives

Pr(|Z≤kn
− E[Z≤kn

]| ≥ n1/2+ϵ) ≤ n log2 n

n1+2ϵ
→ 0

as n → ∞ from the Chebyshev’s Inequality. ■
Combining Lemma 2.3.4 and Lemma 2.3.5, we have the following.

Corollary 2.3.3. For λ > 1, for all α such that 0 < α < ζλ, |Z≥αn − nζλ| ≤ n1/2+ϵ. Moreover,
|Cmax| = Z≥αn with high probability for all α ∈ (ζλ/2, ζλ).

Putting all results we have, we see that:

(i) No middle ground: no clusters between [k log n, αn] for α < ζλ (Lemma 2.3.4).

(ii) The number of vertices with |C(v)| ≤ k log n is concentrated at n(1− ζλ) (Lemma 2.3.5).

(iii) Everything else is in a single component.

Putting everything together, Lemma 2.3.2 (a) and (b) are proved.

Lecture 5: Component Size in Critical Regime
4 Feb. 9:302.3.3 Critical Regime λ = 1

What is left is the critical regime, where we want to prove Theorem 2.1.1 (c): the random vector
1

n2/3 (|Cmax1
|, |Cmax2

|, . . . ) converges in distribution to a non-trivial limit. To analyze the component size
when λ = 1, as what we have done previously, we have |C(1)| ⪯ Bin(n− 1, 1/n). Moreover,

• Ber(p) ⪯ Pois(θ) for θ = − log(1− p);

• Bin(n− 1, p) ⪯ Pois(−(n− 1) log(1− p)) ⪯ Pois(1) with p = 1/n since

−(n− 1) log

(
1− 1

n

)
= (n− 1)

(
1

n
+

1

2n2
+

1

3n3
+ . . .

)
≤ (n− 1) · 1

n
· 1

1− 1
n

= 1.

Hence, for λ = 1, we have |C(1)| ⪯ Pois(1). This gives the following.

Claim. For any k > 0, Pr(|C(1)| ≥ k) ≤ 1/
√
k.

Proof. Let T1 ∼ BP(Pois(1)). We see that

Pr(|C(1)| ≥ k) ≤ Pr(|T1| ≥ k) =

∞∑
i=k

e−i (1 · i)i−1

i!
≤

∞∑
i=k

e−i · ii−1

√
2π · i1/2+i · e−i

=
1√
2π

∞∑
i=k

1

i3/2
≤ 1√

k
,

where we use the Stirling approximation with i! ≥
√
2πi · e−i · ii. ⊛

Given the above bound, if we want to use the usual union bound to bound the maximum component
size, the bound is too weak. However, we can improve upon the union bound in this case as

Pr(|Cmax| ≥ k) = Pr(Z≥k ≥ k) ≤ 1

k
E[Z≥k] =

n

k
Pr(|C(1)| ≥ k) ≤ n

k3/2
,

hence k = a · n2/3 for some a > 0 suffices. We now restate and prove Theorem 2.1.1 (c) in Lemma 2.3.6:
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Lemma 2.3.6 (Component of critical Erdős-Rényi graph). Let G ∼ ER(n, λ/n) with λ = 1.

(a) For any ϵ > 0, for some large a = a(ϵ), lim infn→∞ Pr
(
n2/3/a ≤ |Cmax| ≤ a · n2/3

)
≥ 1− ϵ.

(b) For any k > 0, 1
n2/3 (|Cmax1

|, |Cmax2
|, . . . , |Cmaxk

|) converges in distribution to some non-
degenerated random vectors as n → ∞.

Proof. We already proved the upper bound part of (a). For the lower bound, consider Z≥n2/3/a.
We can show that it is concentrated at the mean tightly, and as a → ∞, the mean is small.

For (b), recall the exploration algorithm, where we maintain (At,Ut,Rt). We know that Ut ∼
Bin(n − 1, (1 − p)t) and At = n − 1 − Ut with A0 = 1. We want to study when At = 0 for some t
since this indicates the completion of the exploration of the component.

However, since we want to control k components at once, after a component is fully explored, we
continue the exploration by adding a new random vertex as the seed into the set of active vertices.
Hence, the corresponding process is defined as

Ât := At + #0 hitting in [0, t− 1] in Ât = At −min
s<t

As + 1,

where we add one to At after the current component is fully explored (Ât = 0).

Intuition. We see that Ât again encodes the entire graph into a single path.

To make sense of Ât := At −mins<t As + 1, it’s worth recalling that At → −∞ as t → ∞:

As previously seen. We have At
D
= n− t− Bin(n− 1, (1− p)t) with

E[At] = n− t− (n− 1)

(
1− 1

n

)t

≈ 1− t

n
+

t2

2n
+ . . . .

When t ≥
√
n, the quadratic term dominates, contributing a negative drift. Moreover,

Var[At] = (n− 1)

(
1− 1

n

)t
(
1−

(
1− 1

n

)t
)

≈ te−t/n.

One can check that when 1 ≪ t ≪ n, by CLT, the standard Binomial converges in distribution
to N (0, 1) if and only if np(1− p) → ∞. This implies At ≈ −t2/2n+

√
t · N (0, 1).

Intuition. The timescale where t2/n ≈
√
t, i.e., t ≈ n2/3, is necessary to maintain the balance

between the subcritical and supercritical behavior.

From the recursive definition of Ut, we can make a martingale. Let Bs denotes the standard
Brownian motion, then with martingale CLT, one can prove that(

1

n1/3
A⌊s·n2/3⌋

)
s≥0

D→
(
−s2

2
+Bs

)
s≥0

.

Hence, for Ât = At −mins<t As + 1, scaling by n2/3 now, we have(
1

n2/3
Âs·n2/3

)
s≥0

D→
((

Bs −
s2

2

)
− inf

t≤s

(
Bt −

t2

2

))
s≥0

,

which is precisely the reflected (and thus non-negative) version of the process (Bs− s2/2)s≥0. With
this, we can use a martingale CLT argument to show that the component sizes converge to the
excursion lengths of the Ât process. ■

In particular, from the proof of Lemma 2.3.6, we know that |Cmax1
| = Θp(n

2/3). Furthermore, we
can zoom in at the critical region and study what will happen when λ is very close to 1.
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Remark (Critical window). When λ = 1 + θ/n1/3 for some fixed θ ∈ R, the above becomes(
1

n1/3
A⌊s·n2/3⌋

)
s≥0

D→
(
−s2

2
+Bs + θs

)
s≥0

,

and (
1

n2/3
Âs·n2/3

)
s≥0

D→
((

BS − s2

2
+ θs

)
− inf

t≤s

(
Bt −

t2

2
+ θt

))
s≥0

.

Hence, when λ is in a small window [1−θ/n1/3, 1+θ/n1/3] around 1, we’re effectively in the critical
regime where the phase transition happens.

This concludes the discussion for the component sizes on the sparse regime where λ = Θ(1).

2.4 Connectivity Threshold via Structure Counting
Next, we’re interested in understanding the structural emergence behavior as λ varies.

Example (Disconnected edge). Again consider ER(n, λ/n) for some λ ∈ (0,∞). Then

E[#disconnected edge] =
n(n− 1)

2
· λ
n

(
1− λ

n

)2(n−2)

.

We have done such a counting several times. For instance, one can consider other structures such as
3-chains, cycles, etc. In general, we have the following:

Example. Let vS and eS be the number of vertices and edges of a specific structure S, respectively.
Then we see that with cS being the number of S structure on vS many labeled vertices,

E[#S in ER(n, λ/n)] =

(
n

vS

)
· cS ·

(
λ

n

)eS (
1− λ

n

)vS(n−vS)+((vS2 )−eS)

≈ nvS

vS !

λeS

neS
e−λvS .

Intuition. We see that it gets increasingly difficult (with k grows) for k-components to remain
isolated. This hints that the bottleneck to connectivity of a graph are isolated vertices.

It turns out that we can characterize this, where we can count the frequency of a particular cluster
and (induced/injective) structure appears in ER(n, p). In particular, this gives the connectivity threshold
to be log n: as λ < log n, there are single vertices, while after λ > log n, the whole graph is connected
since all finite cluster disappears. We will also study the behavior when λ = Θ(n) later.

Lecture 6: Subgraph Counting in Sparse Regime
6 Feb. 9:302.4.1 Stein-Chen Method for Poisson Approximation

Let’s first summarize some common proof techniques we have seen so far:

As previously seen. For some counting random variable Z (i.e., non-negative integer-valued):

• Pr(Z > 0) = Pr(Z ≥ 1) ≤ E[Z]. For example, Pr(|Cmax| ≥ k) = Pr(Z≥k ≥ k) ≤ E[Z≥k]/k.

• Pr(Z = 0) = Pr(Z − E[Z] = −E[Z]) ≤ Pr(|Z − E[Z]| ≥ E[Z]) ≤ Var[Z]/(E[Z])2.

To proceed, we will need some tools on Pois(λ). The following notation will be heavily used.

Notation. For X, k ∈ N, we let (X)k := X!/k! = X(X − 1) · · · (X − k + 1).

By some calculation, the following can be shown.
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Lemma 2.4.1. For X ∼ Pois(λ), E[(X)k] := E[X(X − 1) . . . (X − k + 1)] = λk for all k = 1, 2, . . ..

Surprisingly, if all moments of a random variable converges to what is stated in Lemma 2.4.1, then
it indeed will converge in distribution to a Poisson random variable.

Lemma 2.4.2. For a non-negative integer random variable Xn, if E[(Xn)k] → λk as n → ∞ for all
k = 1, 2, . . ., then Xn

D→ Pois(λ).

With Lemma 2.4.2, the main tool we will be utilized can be proven (omit due to its length):

Theorem 2.4.1 (Stein-Chen method). Let (Ai)
n
i≥1 be a sequence of events with pi = Pr(Ai) for all

i ∈ [n], and let X =
∑n

i=1 1Ai
with λ = E[X] =

∑n
i=1 pi. If (Ai)

n
i≥1’s are positively associated, i.e.,

(Ai)i̸=j | Aj ≥ (Ai)i ̸=j for all j, then,

dTV(X,Pois(λ)) =
1

2

∑
k≥0

∣∣∣∣Pr(X = k)− e−λλ
k

k!

∣∣∣∣ ≤ min(1, 1/λ)

(
Var[X]− λ+ 2

n∑
i=1

p2i

)
.

On the other hand, if (Ai)
n
i≥1 are negatively associated, i.e., (Ai)i ̸=j | Aj ≤ (Ai)i ̸=j for all j, then

dTV(X,Pois(λ)) =
1

2

∑
k≥0

∣∣∣∣Pr(X = k)− e−λλ
k

k!

∣∣∣∣ ≤ min(1, 1/λ) (λ−Var[X]) .

2.4.2 Injective Cycle Counting
Consider the cycle counting problem for ER(n, λ/n) for some λ > 0:

Problem 2.4.1 (Cycle counting). For some fixed k ≥ 3, we’re interested in controlling

Xk :=
∑

(v1,...,vk),vi∈[n]
vi ̸=vi′ for i ̸= i′

/ starting point
orientation

1(v1,...,vk) is a k-cycle,

where the summation is over all k distinct vertices modulo the starting one and the orientation.

Note. For the cycle counting problem, it’s okay that the k-cycle has additional edges, i.e., we care
about induced subgraph rather than the exact structure.

The following is easy to see.

Lemma 2.4.3. Let G ∼ ER(n, λ/n). When λ < 1, the expected number of cycles is less than∑∞
k=3 λ

k/2k < ∞. Moreover, the expected number of vertices in a cycle is less than
∑∞

k=3 E[k·Xk] ≤∑∞
k=3 λ

k/2 < ∞.

Proof. By a simple counting argument, we see that

E[Xk] =

(
λ

n

)k

·
(
n

k

)
k!

2 · k
=

λk

nk
· n(n− 1) . . . (n− k + 1)

2k
=

λk

2k

k∏
i=1

(
1− i

n

)
≈ λk

2k
e−

k(k−1)
2n .

Hence, when k ≪
√
n, we have E[Xk] ⪅ λk/2k, which becomes more vacuous as k increases. ■

We can also calculate the variance of Xk. In particular, we see that

Var[Xk] =

(
n

k

)
k!

2k
·
(
λ

n

)k
(
1−

(
λ

n

)k
)

+O

(
k−2∑
s=1

(
n

k

)
· k!
2k

· nk−s−1 ·
(
λ

n

)k+k−s
)
, (2.2)

where the big-O (second) term is the covariance: If two cycles don’t share edges, then the covariance is
0. Otherwise, it is strictly greater than 0, with s being the number of shared edges between these two
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Lecture 6: Subgraph Counting in Sparse Regime

cycles. In particular, we can show that as n → ∞, we have

k−2∑
s=1

(
n

k

)
· k!
2k

· nk−s−1

(
λ

n

)k+k−s

≤
k−2∑
s=1

λ2k−s

2k
· 1
n
→ 0.

From the Stein-Chen method, we can show the following.

Theorem 2.4.2. Let G ∼ ER(n, λ/n). For a fixed λ > 0 and k ≥ 3, we have

• Xk
D→ Pois(λk/2k) as n → ∞.

• For any fixed d, (Xk)
d
k=3

D→
⊗d

k=3 Pois(λ
k/2k) as n → ∞.

• For any fixed d,
∑d

k=3 Xk
D→ Pois(

∑d
k=3 λ

k/2k) for all λ > 0.

• If λ < 1, the above converges, i.e.,
∑∞

k=3 Xk
D→ Pois(

∑∞
k=3 λ

k/2k).

2.4.3 Injective Tree Counting
The next elementary object after cycles might be trees. Let G ∼ ER(n, λ/n), consider the problem of
degree counting, which simply corresponds to the star graph. Fix k ≥ 0, then the number of vertices
with degree k is defined as

Nk =

n∑
v=1

1deg(v)=k.

We see that

E[Nk] = n ·
(
n− 1

k

)
·
(
λ

n

)k (
1− λ

n

)n−1−k

≈ n · n
k

k!
· λ

k

nk
e−λ = n · λ

k

k!
e−λ. (2.3)

Hence, for all k ≥ 0, as n → ∞,
1

n
E[Nk] →

λk

k!
e−λ.

We can also calculate the variance of Nk, which is

Var[Nk] = n

(
λke−λ

k!

(
1− λke−λ

k!

)
+ o(1)

)
+ n(n− 1)

(
Pr(deg(1) = k,deg(2) = k)− Pr(deg(v) = k)2

)
.

(2.4)

We see that Pr(deg(v) = k)2 = Pr(Bin(n− 1, p) = k)2 and

Pr(deg(1) = k, deg(2) = k) =
λ

n
Pr(Bin(n− 2, p) = k − 1)2 +

(
1− λ

n

)
Pr(Bin(n− 2, p) = k)2.

Overall, we have Pr(deg(1) = k, deg(2) = k)− Pr(deg(v) = k)2 ≈ cλ/n+ . . ..

Theorem 2.4.3. Let G ∼ ER(n, λ/n). For any fixed k ≥ 0, λ > 0, and ℓ ≥ 1, as n → ∞, we have(
Nk − E[Nk]√

n

)ℓ

k=1

D→ Nℓ(0, D)

where D ∈ Rℓ×ℓ is a positive definite covariance matrix.

Note. In the above calculation, we assume that there can be edges presented between the non-center
vertices of the star.
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Lecture 7: Connectivity Threshold from Counting

Remark. For the counting problem, the Poisson approximation holds if and only if Var[Z]/E[Z] → 1
as n → ∞.

Using the same idea, we can consider any given tree structure.

Intuition. Consider the following tree with 5 vertices and 4 edges:

We see that the number of components with this tree structure has mean ≈ n5 · λ4/n4 = nλ4.

2.4.4 Connected Component Counting and Connectivity Threshold
One can actually consider a more restrictive version of the structure counting, where we require the
structure to be presented exactly, i.e., in the exact connected component sense. In general, one can show
that for any tree T , let NT to be the number of clusters that look like T in ER(n, p). Then,(

NT − E[NT ]√
n

)
T

D→ Nℓ(0, D)

for some non-degenerate D, where ℓ is the number of trees T ’s we considered jointly.

Example. Consider a tree T that is a 3-chain. Then, E[NT ] ≈ nλ2e−3λ, where NT counts the
number of induced subgraph of 3 vertices being T .

Proof. We see that since there are 3 possible edge configurations for T among three vertices,

E[NT ] =

(
n

3

)
· 3 ·

(
λ

n

)2(
1− λ

n

)3(n−3)+1

≈ nλ2e−3λ,

with the difference being not allowing extra edges present between the two vertices at the end. ⊛

Example. More generally, given a cluster Tk of k nodes and k− 1 edges, for some small constant ck,

E[NTk
] = nλk−1e−kλ ·Θk(1) = exp(log n− kλ+ (k − 1) log λ+ ck).

The above calculation has some interesting implications. If λ > (1 + ϵ) log n/k, then E[NTk
] → 0 as

n → ∞, i.e., no Tk will appear. In particular, we will show that as λ > log n, i.e., when isolating vertices
stop appearing, G becomes connected.

Intuition. Consider λ > (1 + ϵ) log n/k and k decreases from a large number until k = 1. We see
that Tk stop showing in order, and in the end, the graph becomes connected.

Lecture 7: Connectivity Threshold from Counting
11 Feb. 9:30As previously seen. When λ = pn > 1, a giant component exists.
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Lecture 7: Connectivity Threshold from Counting

Now, let’s formalize the cluster counting calculation: when λ > log n/k for any fixed k ≥ 1,

E[#clusters of size k] ≤ E[#clusters having a spanning tree of size k]

≤ kk−2 ·
(
n

k

)
·
(
λ

n

)k−1(
1− λ

n

)k(n−k)

≤ kk−2 · nk

e−kkk+1/2
· λ

k−1

nk−1
· e−λk(n−k)/n =

n

λk5/2

(
eλe−

λ(n−k)
n

)k
.

(2.5)

When k is fixed and λk2 ≪ n, the above is bounded by n
λ (eλe

−λ)k. Hence, when λ = (1 + ϵ) log n/k for
some ϵ > 0, this bound goes to 0 as n → ∞.

Remark. When λ > log n/k, we start to see clusters of size k vanish.

Theorem 2.4.4. Let G ∼ ER(n, λ/n) with λ = log n + c for some constant c > 0. Let Z be
the number of isolating vertices in G. Then, as n → ∞, Z

D→ Pois(e−c), and in particular,
Pr (no isolated vertices) → e−e−c

.

Proof. One can use Stein-Chen method or moment method. However, here we consider computing
the falling factorial moment directly. Firstly,

E[Z] = nPr (vertex 1 is isolated) = n(1− p)n−1 = n

(
1− log n+ c

n

)n−1

≈ ne− logn−c+o(1) → e−c.

In general, for a fixed k ≥ 2, we have

E[(Z)k] = E

 ∑
i1,...,ik∈[n]

1i1,...,ik are isolated


= (n)k · Pr (vertices 1, 2, . . . , k are isolated)

≈ nk(1− p)k(n−k)(1 + o(1)) ≈ (n(1− p)n)
k → (e−c)k.

Since this is true for all k, from Lemma 2.4.2, we’re done. ■

It turns out that our intuition is correct: i.e., when isolating vertices stop showing, the whole graph
becomes connected.

Theorem 2.4.5. Let G ∼ ER(n, λ/n) with λ = log n+ c for some constant c > 0. Then, as n → ∞,

Pr (G is connected) → e−e−c

.

Proof. It’s clear that {G is connected} ⊆ {G has no isolated vertices},

0 ≤ Pr(G has no isolated vertices)− Pr(G is connected)

= Pr(∃clusters of size k for k ∈ {2, 3, . . . , ⌈n/2⌉})

≤
n/2∑
k=2

E[#clusters of size k],

then from Equation 2.5, we have

≤
n/2∑
k=2

n

λk5/2

(
eλe−

λ(n−k)
n

)k
=

c∑
k=2

n

λk5/2

(
eλe−

λ(n−k)
n

)k
+

n/2∑
k=c+1

n

λk5/2

(
eλe−

λ(n−k)
n

)k
,

where we split the sum into two at k = c for some constant c. It’s easy to see that the first term
goes to 0 as n → ∞, while the second term is ≤ n(eλe−λ/2)c, which also goes to 0 as n → ∞.
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Lecture 7: Connectivity Threshold from Counting

Hence, we conclude that

Pr(G is connected) = Pr(G has no isolated vertices) → e−e−c

from Theorem 2.4.4, proving the result. ■

In fact, not only the number of isolating vertices follows Pois(e−c) (assuming λ = log n+ c). Under
suitable regime of λ, the number of degree k vertices also follows Pois(e−c):

Theorem 2.4.6. For G ∼ ER(n, λ/n) with λ = log n + k log log n + c for some fixed c ∈ R. Then,
Nk

D→ Pois(e−c) for any fixed k ≥ 0, where Nk :=
∑n

v=1 1deg(v)=k.

Proof. From Equation 2.3, with a more careful calculation,

E[Nk] = n · Pr(deg(1) = k) = n ·
(
n− 1

k

)
·
(
λ

n

)k (
1− λ

n

)n−1−k

≈ n
nk

k!

λk

nk
· e−λ(1− k+1

n ).

We want nλke−λ = Θ(1), hence λ = log n+ log logk n+ c. When we choose this λ, E[Nk] → e−c. ■

Remark. In general, rare events are modeled by Poisson.

Here, we mention one last example about Hamiltonian cycle without proving it.

Definition 2.4.1 (Hamiltonian cycle). A Hamiltonian cycle in a graph G = (V,E) is an n-cycle with
n = |V |, i.e., a cycle passing through all vertices.

Theorem 2.4.7. For G ∼ ER(n, λ/n) with λ = log n+ log log n+ c for some fixed c ∈ R,

Pr(G contains a Hamiltonian cycle) → e−e−c

.

Proof idea. It’s obvious that

{G contains a Hamiltonian cycle} ⊆ {deg(v) ≥ 2 for all v ∈ [n]} = {N0 = N1 = 0}.

It turns out that {N1 = 0} dominates, hence the probability converges to e−e−c

as desired. ■

Note. When p increases, small clusters and small degree vertices vanish, while “more structures”
appear.

2.5 Existence Threshold with Chaos Decomposition
We have looked at the counting problem of a given injective structure (e.g., cycles, trees), which leads
to the characterization of connectivity threshold of G ∼ ER(n, p) (Theorem 2.4.5).

As previously seen (Cycle). For the cycle counting with random variable Xk, Lemma 2.4.3 and
Equation 2.2 gives E[Xk] and Var[Xk].

As previously seen (Degree). For the degree counting with random variable Nk, Equation 2.3 and
Equation 2.4 gives E[Nk] and Var[Xk].

However, for general structure of size k, computing the variance of the counting random variable
becomes intractable due to the correlations, unlike the case for cycles and trees. To get a finer control
on the counting random variable, e.g., concentration, we introduce the so-called chaos decomposition.
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Lecture 7: Connectivity Threshold from Counting

2.5.1 Chaos Decomposition
We consider the triangle graph as our running example to illustrate the idea of chaos decomposition.

Example (Running example). Fix a triangle graph H = △. Then, we’re interested in NH , the
number of copies (in the injective-sense) of H in the graph G ∼ ER(n, p). We see that

N△ =
∑

1≤i<j<k≤n

1(i,j),(j,k),(k,i)∈E .

It’s easy to see that E[N△] =
(
n
3

)
p3 ≈ (np)3

6 . But what about its variance?

As previously seen. Recall that ωij = 1(i,j)∈E
i.i.d.∼ Ber(p) for all i < j.

The chaos decomposition starts by centering ωij :

N△ =
∑

i<j<k

ωijωjkωki =
∑

i<j<k

(ωij + p)(ωjk + p)(ωki + p)

=
∑

i<j<k

ωijωjkωki + p(ωijωjk + ωijωki + ωjkωki) + p2(ωij + ωjk + ωki) + p3,

where ω := ω − p. By regrouping, we then have the following decomposition

=
∑

i<j<k

ωijωjkωki︸ ︷︷ ︸
A3

+ p
∑
i,j<k

ωijωik︸ ︷︷ ︸
A2

+(n− 2)p2
∑
i<j

ωij︸ ︷︷ ︸
A1

+

(
n

3

)
p3,

which is the so-called chaos decomposition. This is useful since ωij is a mean zero, independent random
variables. Hence, the correlation between two sums of different orders (of ωij ’s) will be zero, since one
of the ωij ’s will be of odd order, resulting in 0. We hence have

E[A3] = 0, Var[A3] =

(
n

3

)
p3(1− p)3 ≈ n3p3 = (np)3;

E[A2] = 0, Var[A2] = p2 · n
(
n− 1

2

)
· p2(1− p)2 ≈ n3p4 = (np)3 · p;

E[A1] = 0, Var[A1] = (n− 2)2p4 ·
(
n

2

)
p(1− p) ≈ n4p5 = (np)3 · np2.

Claim. Let np2 → ∞, and n2p(1− p) → ∞, then

N△ −
(
n
3

)
p3√

Var[A1]

D→ N (0, 1).

Proof. Since we have

N△√
Var[A1]

=
A3√

Var[A1]
+

A2√
Var[A1]

+
A1√

Var[A1]
.

For the first term, we see that it is E[A3]
2 = Var[A3]/Var[A1] → 0, same for the second term.

However, for the last term, we have

A1√
Var[A1]

=

∑
i<j ωij√(

n
2

)
p(1− p)

,

where
∑

i<j ωij ∼ Bin(
(
n
2

)
, p)−

(
n
2

)
p, and CLT applies. ⊛
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Exercise. Find the CLT threshold for NH for a fixed connected graph H.

Theorem 2.5.1. For ER(n, λ/n) with λ > 1. diam(Cmax1
) ≈ cλ log n.

Lecture 8: Existence Threshold using Chaos Decomposition
13 Feb. 9:302.5.2 Existence Threshold for General Structure

We now consider any finite connected graph F = (VF , EF ) with vF = |VF | and eF = |EF |.

Note. We’re interested in the injective subgraph rather than the induced subgraph.

Let Xn(F ) be the number of copies of F in a graph G = (V,E) with n = |V |, which is

Xn(F ) =
∑

i1,...,ivF distinct / Aut(F )

1(i1,...,ivF ) contains edges in F .

Remark (F -density). Clearly, the maximum value of Xn(F ) is (n)vF /|Aut(F )| when G is a complete
graph. Hence, we can define the density of F (called F -density) in G as

t(F,G) :=
Xn(F )

(n)vF /|Aut(F )|
.

If G ∼ ER(n, p), then the expectation of Xn(F ) is

E[Xn(F )] =
(n)vF

|Aut(F )|
peF ≈ nvF peF .

We see that to decide the existence threshold for the first moment, we want to see nvF peF → 0, which
happens if and only if p ≪ 1/nvF /eF .

Example. If F is a tree, vF /eF = vF /(vF − 1) = 1 + 1/(vF − 1) > 1.

Example. If F is not a tree (but still connected), vF /eF ≤ vF /vF = 1.

To compute the variance, we first consider

Xn(F )− E[Xn(F )] =
∑

∅ ̸=H⊆F

nvF−vH · peF−eH · cn(H,F ) · X̂n(H),

where X̂n(H) =
∑

i1,...,ivH
(ωi1i2 − p)(ωi2i3 − p) · · · (ωivH i1 − p) and cn(H,F ) is some constant depends

only on H and F . This is the chaos decomposition, and we have nice independence. Hence,

Var[Xn(F )] =
∑

∅ ̸=H⊆F

cn(H,R)2n2(vF−vH)p2(eF−eH)nvHpeH (1−p)eH ≈
∑

∅̸=H⊆F

n2vF−vHp2eF−eH (1−p)eH .

For p < 1− ϵ, we have
Var[Xn(F )]

(E[Xn(F )])2
≈

∑
∅ ̸=H⊆F

1

nvHpeH
.

Hence, if we want concentration for Xn(F )/E[Xn(F )], we need nvHpeH → ∞ for all ∅ ̸= H ⊆ F .
Equivalently,

n · min
∅ ̸=H⊆F

peH/vH = n · pmax∅̸=H⊆F eH/vH → ∞.

By letting θ(F ) := max∅̸=H⊆F eH/vH ≥ eF /vF , the above is equivalent to npθ → ∞ or p ≫ 1/n1/θ.
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Remark (Balanced subgraph). If the above maximum is taken when H = F with θF = eF /vF , then
1/nvF /eF = 1/n1/θ and the concentration threshold and existence threshold are the same. In this
case, we say F is balanced.

However, for an unbalanced F , then there is a gap between the “existence” threshold and con-
centration threshold. We need to look at the maximum H ⊊ F ,

We see that
Var[Xn(F )]

n2vF−2p2eF−1
≈ Θ(1) +

∑
H⊆F
eH>1

e2−vHp1−eH .

The edge count will dominate Xn(F ) variance when nvH−2peH−1 → ∞ for all H ⊆ F and eH > 1 and

minH⊆F,eH>1 p
eH−1

vH−2 → ∞.

θ1(F ) := max
H⊆F
eH>1

eH − 1

vH − 2
≥ θ(F ),

where the last inequality is an exercise.
When p ∈ (0, 1) is fixed,

Var

[
Xn(F )

E[Xn(F )]

]
≤ c · n2vF−2p2eF−1

n2vF p2eF
≤ cF

n2p

and
E[Xn(F )] =

(n)vF
|Aut(F )|

· peF ≈ nvF

for all fixed finite connected graph F . Hence, the density of F converges in probability to peF as n → ∞
for all F .

2.6 Graphon

Definition 2.6.1 (Graphon). A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1], i.e.,
W (x, y) = W (y, x) for all x, y.

Example (Triangle).

Example (Crossing).

We see that we can embed any fixed, simple graph F as a graphon WF .

2.6.1 Space of Graphon
Since this embedding is not unique due to various vertex relabeling, we define the space of graphons as
follows.

Definition 2.6.2 (Graphon space). The graphon space, denoted as W̃, is defined as

W̃ := {W : [0, 1]2 → [0, 1] | W is a graphon, modulo
(
W (x, y)

)
=
(
W (φx, φy)

)
,

where φ : [0, 1] → [0, 1] is a bijection}.

Now, to introduce the distance over the graphon space, we introduce the following first.

Definition 2.6.3 (Cut norm). The cut norm of a graphon W is defined as

∥W∥□ = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y) dxdy

∣∣∣∣ .
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It’s probably trivial to see that in Definition 2.6.3, the definition is a bit redundant since we only
care about graphons, which is non-negative, i.e., we always have

∥W∥□ =

∫
[0,1]2

W (x, y) dx dy.

However, what we really care is the “metric” induced by this norm:

Definition 2.6.4 (Cut metric). The cut metric between two graphons W̃ , Ỹ ∈ W̃ is defined as

d□(W̃ , Ỹ ) = inf
φ : [0,1]→[0,1]

∥W − Y ◦ φ∥□,

where W and Y are any representation graphon of W̃ and Ỹ , respectively.

Remark. It’s also possible to consider defining graphon space by first defining the cut metric and
identify two graphons W1,W2 to be the same when d□(W1,W2) = 0.

2.6.2 Subgraph Density
If W is a graphon, we can define the F -density in W similarly as in the usual graph G:

t(F,W ) :=

∫
x1,...,xvF

∏
(i,j)∈E(F )

W (xi, xj) dxi · · · dxvF ,

which is the continuous version of the F -density in a graph. It turns out that the F -density characterizes
a graphon exactly:

Theorem 2.6.1. Given a graphon sequence (Wn) ∈ W̃, d□(Wn,W ) → 0 as n → ∞ if and only if
t(F,Wn) → t(F,W ) for all finite connected graph F .

Proof idea. What we will prove here is that, for Gn ∼ ER(n, p) with a fixed p ∈ (0, 1), then

d□(Gn, p · 1)
p→ 0

as n → ∞. Indeed, For any fixed finite connected graph F ,

t(F,ER(n, p))
p→ peF .

If W ≡ p, a constant function, then t(F,W ) = peF as well. Then, d□(ER(n, p), p · 1)
p→ 0. ■

Lecture 9
18 Feb. 9:30
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