
University of Illinois Urbana-Champaign
2024FA
CS598

Final Report

Pingbang Hu, Sean Liu
NetID: pbb, zxliu2

December 9, 2024

CS598 (Chandra Chekuri): Final Report

1 Introduction
Given an undirected 3-colorable graph G = (V,E), we would like to color G with the least number of

colors efficiently. This problem was first proposed by Wigderson [Wig83], and we shall see how balancing
combinatorial with semi-definite programming (SDP) methods leads to a natural O(n0.5) bound, and how
this was first broken [KT17]. We focus on the combinatorial side, specifically Blum’s contributions [Blu94]
that laid the groundwork for most of Kawarabayashi et al.’s later breakthroughs [KT12, KT17, KTY24].

1.1 General Strategy
One of the most important notions in this line of work originates from Blum’s progress towards k-

coloring [Blu94]. While deferring the exact definition, the general idea is that if it is always possible to
make progress (towards some fixed k) for any 3-colorable graph, then we can Õ(k)-color any 3-colorable
graph in polynomial time. An interesting aspect of this line of work is that, under different regimes, two
different approaches dominate one another. The best bound is obtained by balancing between them via
choosing an appropriate ∆: specifically, for any parameter ∆, it suffices to make progress under either a
minimum degree ∆ = ∆min or maximum degree ∆ = ∆max constraint [AC06, BK97, KT17].

1.2 Known Results
Assuming that for a 3-colorable graph with minimum degree ∆min = n1−Ω(1), a series of bounds from

past literature for progress follows a sequence of the form:

Õ
(
(n/∆min)

i/(2i−1)
)
, (1)

including Õ(n/∆min) by Wigderson [Wig83] for i = 1, Õ((n/∆min)
2/3) and Õ((n/∆min)

3/5) for i = 2

and 3 by Blum [Blu94], and finally Õ((n/∆min)
4/7) for i = 4 by Kawarabayashi and Thorup [KT12].

Combinatorial Bounds for High Minimum Degree. The first series of bounds implied by Equa-
tion 1 stems from the simple observation that we may assume the minimum degree ∆min ≥ k given
any targeted coloring number. This is because it is trivial to color the rest of the graph after coloring
vertices with a degree exceeding k. Hence, from Equation 1 for i = [4], ∆min ≥ k = (n/∆min)

i/(2i−1) ⇔
∆min ≥ ni/(3i−1), which yields an Õ(ni/(3i−1)) bound for any ∆min ≥ ni/(3i−1). Thus, we get Õ(n1/2) for
i = 1 [Wig83], Õ(n2/5) and Õ(n3/8) for i = 2 and 3, respectively [Blu94], and Õ(n4/11) for i = 4 [KT12].

SDP Bounds for Low Maximum Degree. For 3-colorable graphs with maximum degree ∆max,
Karger et al. [KMS98] used SDP to achieve O(∆

1/3
max) colors. Combining with Equation 1, one can color

3-colorable graphs with Õ(ni/(5i−1)) colors for i ∈ [4] by balancing ∆
1/3
max and (n/∆min)

i/(2i−1) [BK97,
Corollary 3]. In particular, the following general lemma for balancing is known:

Lemma 1 (Balancing [KT17]). Suppose for some near-polynomial d and f that for any n, we can
make progress towards an Õ(f(n)) coloring for any 3-colorable graph with either (1) ∆min ≥ d(n);
or (2) ∆max ≤ d(n). Then we can make progress towards Õ(f(n))-coloring on any 3-colorable graph.

This gives Õ(n1/4) for i = 1 and Õ(n3/14) = Õ(n0.2142) for i = 3. We omit i = 4 [KT12] as this
appears much later, and further improvements on the SDP bounds have already been achieved. As
Equation 1 converges to Õ((n/∆min)

1/2) from above, the bound Õ(n1/5) emerges as a natural barrier.
Later improvements in SDP combined with Blum’s result [Blu94] suggest a similar barrier: Arora et
al. [AC06] achieved O(n0.2111) colors based on the sparsest cut SDP [ARV09], while Chlamtac [Chl07]
further improved it to O(n0.2072). Both results rely on bounds of the form O(∆

1/3−ε(n,∆max)
max), where

ε(n,∆) > 0 is a small value that decreases as a complex function of ∆. With these new SDP results, the
combinatorial bound Õ(n4/11) for i = 4 yields a final bound of Õ(n0.2049) colors [KT12].

Balancing. A more careful treatment of balancing different regimes finally leads to a breakthrough:
while Equation 1 converges to Õ((n/∆min)

1/2) from above with the natural condition ∆min ≥ n1/3, if our
goal is to balance it with the SDP bounds such as ∆1/3

max, Equation 1 only needs to hold when ∆min ≥ n3/5.

Page 1 of 7

CS598 (Chandra Chekuri): Final Report

This idea is exploited in [KT17] to show that Equation 1 holds for i = 12 when ∆min ≥ n0.61674333.
Combining the best current SDP bound [Chl07], this yields an overall coloring bound of Õ(n0.19996),
breaking the Õ(n1/5) barrier. The latest advancement [KTY24] further improves the combinatorial
bound, where the limit of Equation 1, i.e., Õ((n/∆)1/2), can be approached arbitrarily when ∆min >

√
n:

Theorem 1 ([KTY24]). For any 3-colorable graph with ∆min > n0.5, we can make progress towards
a k-coloring for some k = 2(log logn)2

√
n/∆min in polynomial time.

Combining Theorem 1 with the best SDP bound [Chl07] at ∆min = n0.605073, an Õ(n0.19747)-coloring
can also be found in polynomial time. The goal of this report is to sketch the proof of Theorem 1.

2 Preliminaries
We adopt all the standard notations. In addition, given a graph G = (V,E) and some X ⊆ V , we let

dY (X) = {dY (v) | v ∈ X} to be the set of degrees to Y from X, and let min dY (X), max dY (X), and
avg dY (X) denote the minimum, maximum, and average degree from X to Y . The last non-standard
notation is the so-called near-polynomial function f , meaning that f is non-decreasing and that there are
constants c, c′ > 1 such that cf(n) ≤ f(2n) ≤ c′f(n) for all large enough n. This includes any function
of the form f(n) = nα logβ n for constants α > 0 and β.

2.1 Making Progress

Blum has a general notion of progress towards an Õ(k) coloring [Blu94], or simply progress if k is
understood, with the basic idea being that such progress eventually leads to a full Õ(k) coloring of a
graph. There are three types of progress towards Õ(k) coloring:

Type 0: Finding vertices u and v that have the same color in every 3-coloring.

Type 1: Finding an independent or 2-colorable vertex set X of size Ω̃(n/k).

Type 2: Finding a non-empty independent or 2-colorable vertex set X such that |N(X)| = Õ(k|X|).
As shown in Lemma 2, if we can always make progress towards an Õ(f(n)) coloring in polynomial

time, then we may color G with Õ(f(n)) colors in polynomial time, reducing the coloring problem into
one of finding progress. It turns out that one can exploit the 3-colorability property to guarantee progress
that is otherwise not afforded to us.

Lemma 2 ([Blu94]). Let f be a near-polynomial. If we in time polynomial in n can make progress
towards an Õ(f(n)) coloring of either Type 0, 1, or 2, on any 3-colorable graph on n vertices, then
in time polynomial in n, we can Õ(f(n)) color any 3-colorable graph on n vertices.

Proof sketch. If there is Type 0 progress and we find that u and v have the same color in every 3-coloring,
then we may shrink u, v into a new node, with arcs previously connecting to u or v connecting into this
new node, and we may recurse on this new graph. Thus this is an easy case, and we shall assume that
this does not happen for the sake of argument.

Firstly, if we can always find an independent or 2-colorable set of size O(n/k), then we can always
achieve an O(k)-coloring of G. We will omit the calculation, but in essence, every time we find such a
set, we can color that set with 1 or 2 colors, remove that set from the graph, and recurse. Then we shall
prove that if we can always make Type 1 or 2 progress, we will always be able to find an independent or
2-colorable set of size O(n/k). We shall maintain sets V ′, U with the invariant that U has no neighbors
in V ′. V ′ starts with V , while U is empty at the start. Then while |V ′| ≥ n/2, if we make Type 1
progress then we just return; thus we will always assume that we make Type 2 progress in V ′. In each
iteration, if you find an independent or 2-colorable set S with r vertices, then you add S to U and remove
S ∪N(S) from V ′. At the end, |V ′| < n/2 and we return U .

We see that U is 2-colorable because at every step you find a set from V ′, which at every step has
no neighbors in U . Hence you can use the same 2 colors to color every S. We also see that U is large,
because at every step we remove O(|S| + k|S|) = O(k|S|) vertices, with |S| of that going to U . Since
|V ′| < n/2, we thus have |U | = O(n/k), so we have a 2-colorable set with O(n/k) vertices. ■

Page 2 of 7

CS598 (Chandra Chekuri): Final Report

2.2 Monochromatic Progress and Multichromatic Test
With Lemma 2, our goal now becomes to identify a small k such that we can guarantee the progress

of some near-polynomial f(n) ≥ k. As we will see, the key subroutine, monochromatic subroutine, is to
find a vertex set X with |X| > 1 that is guaranteed to be monochromatic in every 3-coloring if no other
progress is made along the way. If we get to this point, any pair of vertices in X will give us Type 0
progress, and hence we’re done. We refer to this as monochromatic progress. A useful tool to obtain
monochromatic progress is the following multichromatic test with a common parameter Ψ = n/k2:

Lemma 3 (Multichromatic test [Blu94]). Given a vertex set X ⊆ V of size at least Ψ, in polynomial
time, we can either make progress towards an Õ(k)-coloring of G, or else guarantee that under every
3-coloring of G, X is multichromatic.

2.3 Two Level Structure
The most complex ingredient from Blum [Blu94] is a certain regular second neighborhood structure.

Specifically, unless other progress is made, for some ∆1 = Ω̃(∆min), in polynomial time [Blu94, KT17],
we can identify a 2-level neighborhood structure H1 = (r0, S1, T1) in G from a root r0 ∈ V , that bound
the number of edges between two neighborhoods S1 and T1:

• S1: a first neighborhood S1 ⊆ N(r0) of size at least ∆1;

• T1: a second neighborhood T1 ⊆ N(S1) of size at most Ψk = n/k (S1 and T1 may overlap);

• ∆1: the vertices in S1 all have degrees at least ∆1 into T1, considering edges E(S1, T1) in G;

• δ1: there exists some δ1 such that the degrees from T1 to S1 are all between δ1 and 5δ1.

3 Methodology
In this section, we present the recursive combinatorial coloring algorithm [KTY24] building upon the

previous work [KT17] that recurses through a sequence of nested cuts until it finds progress.

3.1 Overview of Recursive Combinatorial Coloring
Given a 3-colorable graph with ∆min ≥

√
n, Algorithm 1 makes progress towards a k-coloring for

k = 2(log logn)2
√
n/∆min. Algorithm 1 utilizes the two-level neighborhood structure H1 = (r0, S1, T1) in

Section 2.3, and recurses on induced sub-problems (S, T) ⊆ (S1, T1) with edges E(S, T) between S and
T in G. Specifically, there are two loops, the inner and the outer, both are combinatorial.

Algorithm 1: Seeking Progress Towards Õ(k) Coloring
Data: A 3-colorable graph G = (V,E), coloring target k

1 (S1, T1,∆1, δ1)← initial two-level structure // Section 2.3
2 for j = 1, 2, . . . do
3 (S, T)← (Sj , Tj)
4 do // Monochromatic subroutine
5 if |S| ≤ 1 then return “Error A”
6 U ← {v ∈ T | dS(v) ≥ δj/4}
7 if |U | < Ψ then return “Error B”
8 if Check-Multichromatic(G, U) = False then return “Progress made” // Lemma 3
9 if ∃v ∈ U s.t. Cut-or-Color(G, S, T , v) = “cut around (X,Y)” then // Algorithm 2

10 (S, T)← (X,Y)
11 else
12 return “S is monochromatic in every 3-coloring” // Progress found

13 while |E(S, T)| < δj |T |/2
14 (X ′, Y ′)←Best-Side-Cut(G, S, T , Sj, Tj) // Algorithm 4
15 if |Y ′| < |T | then (S, T)← (X ′, Y ′)
16 (Sj+1, Tj+1,∆j+1, δj+1)←Regularize(G, S, T) // Algorithm 3

Page 3 of 7

CS598 (Chandra Chekuri): Final Report

Outer Loop. When we start an outer loop at iteration j, it is with a quadruple (Sj , Tj ,∆j , δj) where
(Sj , Tj) ⊆ (S1, T1) such that degrees from Sj to Tj are at least ∆j , and degrees from Tj to Sj are between
δj and 5δj , i.e., the invariants described in Section 2.3 are maintained with the fixed vertex root r0.

Inner Loop. On the other hand, the inner loop, known as the monochromatic subroutine, tries to find
a monochromatic progress while maintaining the following invariant for (S, T):

(i) At least Ψ vertices of high S-degree (≥ δj/4) in T .

We define the set U as the set of high-degree nodes in T to S. Because of (i), U is large enough, and we
may always either make progress or guarantee that it is multichromatic with Lemma 3.

3.2 Inner Loop: Monochromatic Subroutine
Cut-or-Color. Given sets S, T ⊆ V and a an arbitrary seed vertex t ∈ T with high S-degree, Algo-
rithm 2 either (1) makes some progress; (2) reports that S is monochromatic in every 3-coloring such
that r0 and t have different colors; (3) finds a “cut around a sub-problem (X,Y) ⊆ (S, T)” satisfying:

(ii) The original high S-degree vertex t has all its neighbors to S in X, i.e., NS(t) ⊆ X.

(iii) All edges from X to T go to Y , so there are no edges between X and T \ Y .

(iv) Each vertex s′ ∈ S \X has |NY (s
′)| < Ψ.

(v) Each vertex t′ ∈ T \ Y has |NY (NN(r0)(t
′))| < Ψ.

Algorithm 2: Cut-or-Color
Data: A 3-colorable graph G = (V,E), S ⊆ Sj , T ⊆ Tj , high S-degree vertex t ∈ T

1 X ← NS(t), Y ← NT (X)
2 while True do
3 if X = S then
4 return “S is monochromatic in every 3-coloring where t and r0 have different colors”
5 else if ∃s ∈ S \X s.t. |NY (s)| ≥ Ψ then // X-extension
6 if Check-Multichromatic(G, NY (s)) = False then // Lemma 3
7 return “Progress made”
8 else
9 X ← X ∪ {s}, Y ← Y ∪NT (s)

10 else if ∃t′ ∈ T \ Y s.t. |NY (NN(r0)(t
′))| ≥ Ψ then // Y -extension

11 if Check-Multichromatic(G, NY (NN(r0)(t
′))) = False then // Lemma 3

12 return “Progress made”
13 else
14 Y ← Y ∪ {t′}
15 else // X ̸= S and neither an X nor a Y -extension is possible
16 (X(t), Y (t))← (X,Y)
17 return “cut around (X(t), Y (t))”

From the algorithm, (ii) to (v) are easy to see. The non-trivial invariant is the following:

(vi) If r0 was red and t was green in a 3-coloring C3, then X is all blue and Y has no blue in C3.

To see (vi), initially, if r0 is red and t is green, then X = NS(t) is incident to both r0 and t, so it must
be blue; Y = NT (X) is incident to X, so it cannot have blue. The high-level idea of Algorithm 2 is
to extend X and Y while maintaining (vi). Specifically, the X-extension first makes sure that NY (s)
is multichromatic in G for some s ∈ S \X such that dY (s) ≥ Ψ (hence Lemma 3 applies). From (vi),
Y ⊇ NY (s) has no blue, so NY (s) is red and green (must use both as it’s multichromatic), so s is blue.
Clearly, line 9 preserves (vi). Y -extension follows a similar idea, and hence (vi) is an invariant.

The important point is that if we end up with X = S, (vi) implies line 4; otherwise, if neither
extension can be made further, then a “cut around (X,Y)” can be used for recursion in the inner loop,
or monochromatic subroutine, of Algorithm 1. We refer to these cuts as inner cuts from now on.

Page 4 of 7

CS598 (Chandra Chekuri): Final Report

Recursion Towards a Monochromatic Set The monochromatic subroutine seeks a monochromatic
set, starting from a sub-problem (S, T) = (Sj , Tj) with |S| > 1. Assuming (i), Lemma 3 can be applied
to either make progress or certify that U is multichromatic in every 3-coloring. Suppose no progress
is made, then we apply Algorithm 2 to each v ∈ U , leading to three potential outcomes: (a) some
“inner cut around (X(v), Y (v))” is found; (b) some progress is made; (c) otherwise. Note that if some
progress is made, then we’re done; if an “inner cut around (X(v), Y (v))” is found, we can then recurse.
The interesting case is the last: when all v ∈ U , S is monochromatic in every 3-coloring when v and
r0 have different colors. It turns out that this implies that S is monochromatic in every 3-coloring
(line 12) [KT17, Lemma 3.1]. The key idea is that we’ve already established U is multichromatic in
every 3-coloring (Algorithm 1, line 8), and so for any 3-coloring, there must exist some x ∈ X with a
different color to r0 in that coloring. Thus in every case S must be monochromatic.

3.3 Outer Loop: Regularization and Side Cut
Regularization. Put the side cuts aside, the iteration j of the outer loop is finished by regularizing the
degrees of vertices, as described in Algorithm 3. One can show that Algorithm 3 maintains the invariants
described in Section 2.3; specifically, given input (S, T) ⊆ (Sj , Tj), Algorithm 3 outputs (Sr, T r,∆r, δr)
such that degrees from Sr to T r are at least ∆r ≥ avg dT (S)/(30 log n), and degrees from T r to Sr are
between δr and 5δr with δj ≥ avg dS(T)/8 [KT17, Lemma 9.1].

Algorithm 3: Regularize
Data: A 3-colorable graph G = (V,E), S ⊆ Sj , T ⊆ Tj

1 Partition T into sets Uℓ = {v ∈ T | dS(v) ∈ [dℓ, dℓ+1)} where dℓ = (4/3)ℓ

2 ℓ∗ ← argmaxℓ : dℓ≥avg dS(T) |E(Uℓ, S)|
3 δr ← dℓ∗/4, ∆r ← avg dUℓ∗ (S)/4
4 Repeatedly remove vertices v ∈ S with dUℓ∗ (v) ≤ ∆r and w ∈ Uℓ∗ with dS(w) ≤ δr

5 Sr ← S, T r ← Uℓ∗

6 return (Sr, T r,∆r, δr)

r0

Sj

Tj

X

Y u

X ′(u)

Y ′(u)

Last Inner Cut Side Cut

Figure 1: Side cuts and the last inner cuts.

Side Cut. The final ingredient is the concept of
side cuts that can be used as an alternative to the
inner cuts identified by the monochromatic subrou-
tine [KTY24]. In outer round j, at the end of
the inner loop, we have got to the last inner cut
(X,Y) ⊆ (Sj , Tj) such that |E(X,Y)| < δj |Y |/2.
Then, consider a family of side cuts (X ′(u), Y ′(u)),
one for each u ∈ Y with dSj\X(u) ≥ δj/3 such that
X ′(u) = NSj

(u) \ X and Y ′(u) = NTj
(X ′(u)) \ Y .

Note that (X ′(u), Y ′(u)) is disjoint from (X,Y), as
illustrated in Figure 1. Among these side cuts, the
best side cut is the one with the smallest Y ′(u).

Algorithm 4 implements the above construction. Given the best side cut (X ′(u), Y ′(u)), it then replaces
the final inner cut (X,Y) in Algorithm 1 if Y ′ is indeed smaller than Y . Incidentally, the final inner cut
(X,Y) found by the monochromatic subroutine is also the one with the smallest Y , so (X,Y) we end up
using is the one minimizing Y among all inner cuts and side cuts considered.
Algorithm 4: Best Side Cut
Data: A 3-colorable graph G = (V,E), X ⊆ Sj , Y ⊆ Tj , Sj ⊆ V , Tj ⊆ V

1 (X ′, Y ′)← (Sj , Tj)
2 for u ∈ Y do
3 if dSj\X(u) ≥ δj/3 then
4 X ′(u)← NSj (u) \X, Y ′(u)← NTj (X

′(u)) \ Y
5 if |Y ′(u)| < |Y ′| then (X ′, Y ′)← (X ′(u), Y ′(u))

6 return (X ′, Y ′)

Finally, in Algorithm 1, the best inner cut or side cut, denoted as (Xj , Yj) at iteration j, gets assigned
to (S, T) before we regularize it, obtaining the new quadruple (Sj+1, Tj+1,∆j+1, δj+1).

Page 5 of 7

CS598 (Chandra Chekuri): Final Report

3.4 Proof of Theorem 1
It suffices to show that Algorithm 1 is correct and efficient. From the discussion, what is left to prove

is that the invariant (i) holds (implying “Error B” will not occur), “Error A” won’t happen (i.e., S is
non-trivial such that |S| > 1), and Algorithm 1 terminates in poly(n) rounds. It boils down to showing
that the following two preconditions hold for all j before Algorithm 1 terminates [KTY24, Lemma 15]:

(a) ∆j = ∆min/(log n)
O(j) = ω̃(Ψ), and (b) δj ≥ 4∆j/Ψ.

For a particular iteration j, one can show that |Yj | ≤ O(
√
Ψ|Tj |) [KTY24, Lemma 14], and since

|Tj+1| ≤ |Yj | from regularization (Algorithm 3), this can be used recursively. With this bound, both
(a) and (b) can be proved for all j ≤ ⌊log log n⌋. Let’s first see how these imply the correctness of
Algorithm 1, where we implicitly assume that Algorithm 1 terminates in ⌊log log n⌋ rounds for now.

Correctness: Condition (i), “Error A”, and “Error B”. By exploiting (a) and the fact that
max dS(T) ≤ 5δj (from Algorithm 3), one can show that (i) will be satisfied in the monochromatic
subroutine if avg dX(Y) ≥ δj/2 [KT17, KTY24]. Note that this holds during the entire monochromatic
subroutine since line 13, hence, “Error B” will not occur. This further implies that there is at least one (in
fact, ≥ Ψ) high S-degree vertex in T that has at least δj/4 neighbors in S, i.e., |S| ≥ δj/4 ≥ ∆j/Ψ = ω̃(1)
from (a) and (b). This means that |S| > 1, and hence “Error A” will also not occur.

This proves the correctness of Algorithm 1, if we can show that Algorithm 1 indeed terminates in
⌊log log n⌋ rounds, which will also imply efficiency of Algorithm 1, hence proving Theorem 1.

Efficiency: Termination after ⌊log log n⌋ Rounds. Assume no progress has been made in the first j
rounds. Applying |Yj | ≤ O(

√
Ψ|Tj |) recursively, with the initial condition |T1| ≤ n/k, we conclude that

|Yj | = O(Ψk1/2
j

). On the other hand, a simple lower bound for |Yj | is given by |Yj | = Ω(∆2
j/Ψ) [KTY24,

Lemma 11]. We hence see that there exist constants A,B such that A∆2
j/Ψ < BΨk1/2

j ⇔ (∆j/Ψ)2 <

Bk1/2
j

/A. As ∆j/Ψ = ω̃(1) for all j < log log n from (a) and k1/2
j

< 2 for j = ⌈log log k⌉ < log log n,
forcing j < log log n. Hence, Algorithm 1 will always make progress in ⌊log log n⌋ rounds.

Balancing. With Theorem 1, we can show the following:

Theorem 2. In polynomial time, we can color any 3-colorable graph using Õ(n0.19747) colors.

Proof. Using Chlamtac’s SDP result [Chl07, Theorem 15] for low degrees, for ∆max ≤ ∆ = nτ with
τ = 0.605073 and c = 0.0213754, we can make progress towards k = Õ(n0.19747) coloring. By Lemma 1,
we may therefore assume that ∆ is the minimum degree bound, i.e., ∆min ≥ ∆. This is easily above

√
n,

hence by Theorem 1, we get progress towards
√

n/∆ · 2(log logn)2 = n(1−0.605073)/2 · 2(log logn)2 < n0.19747.
With Lemma 2, in polynomial time, we can color any 3-colorable graph with Õ(n0.19747) colors. ■

4 Conclusion
We have followed a line of inquiry that was first posed by Wigderson [Wig83], and have focused on how

combinatorial methods have led to a fruitful line of study [Blu94, KT12, KT17, KTY24]. Combined with
SDP methods [KMS98, Chl07], we can make progress in both cases when the minimum degree is large
and when the maximum degree is small. Defining progress as either finding two vertices such that in
every 3-coloring they are the same color, finding a large 2-colorable set, or finding a 2-colorable set with
a small neighborhood, we show how finding a 2-level structure [Blu94] guarantees that we can always
find progress, invoking a key lemma (Lemma 3) that guarantees either progress or multichromaticity of
a set S provided it is large enough. Next, a novel recursion and the introduction of “side cuts” provide
the tiny but significant boost to break the O(n1/5) barrier and push the boundary further.

If Kawarabayashi et al.’s observation holds that combinatorial improvements always follow the sequence
of O(ni/(2i−1)) colors, then it is bounded below by O(n0.5), and [KTY24] seems to hit that bound—or
at least arbitrarily approach it. Thus it may be reasoned that the next improvement may most likely
result from improved SDP bounds, relaxation of guarantees (for example, allowing for approximation or
probabilistic algorithms), or even a radical approach that abandons the current balancing paradigm.

Page 6 of 7

CS598 (Chandra Chekuri): Final Report

References
[AC06] Sanjeev Arora and Eden Chlamtac. New approximation guarantee for chromatic number. In

Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 215–
224, 2006.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

[BK97] Avrim Blum and David Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Infor-
mation processing letters, 61(1):49–53, 1997.

[Blu94] Avrim Blum. New approximation algorithms for graph coloring. Journal of the ACM (JACM),
41(3):470–516, 1994.

[Chl07] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite programming
relaxations. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),
pages 691–701. IEEE, 2007.

[KMS98] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefi-
nite programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

[KT12] Ken-ichi Kawarabayashi and Mikkel Thorup. Combinatorial coloring of 3-colorable graphs. In
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 68–75. IEEE,
2012.

[KT17] Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than n1/5

colors. Journal of the ACM (JACM), 64(1):1–23, 2017.

[KTY24] Ken-ichi Kawarabayashi, Mikkel Thorup, and Hirotaka Yoneda. Better coloring of 3-colorable
graphs. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages
331–339, 2024.

[Wig83] Avi Wigderson. Improving the performance guarantee for approximate graph coloring. Journal
of the ACM (JACM), 30(4):729–735, 1983.

Page 7 of 7

	Introduction
	General Strategy
	Known Results

	Preliminaries
	Making Progress
	Monochromatic Progress and Multichromatic Test
	Two Level Structure

	Methodology
	Overview of Recursive Combinatorial Coloring
	Inner Loop: Monochromatic Subroutine
	Outer Loop: Regularization and Side Cut
	Proof of Theorem 1

	Conclusion

