
GraSS : Scalable Influence Function with Sparse Gradient
Compression

A Foray to Data Attribution and Influence Function

Pingbang Hu1 Joseph Melkonian2 Weijing Tang3 Han Zhao1 Jiaqi W. Ma1

1University of Illinois Urbana-Champaign 2Womp Labs 3Carnegie Mellon University

July 25, 2025

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 1 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 2 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 3 / 26

Predicting the Future

We start with some abstract nonsense:

Problem
What’s the most fundamental aspect in all scientific problems?

Lots of the time, the answer I would give is prediction:

Example
1. Physics: What would happen if we throw a ball with the given initial condition?
2. Chemistry: What properties emerge if we combine these two materials?

What about Computer Science, or more specifically, AI/ML nowadays? Seems straightforward:

▶ We build models to predict all sorts of things:
▶ E.g., image classification, text completion, weather forecast, etc.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 4 / 26

One Level Up: A Meta Question

What if we zoom out and ask a meta question:

Problem
What’s the most fundamental aspect in solving all scientific problems?

Now this varies based on the subject:

Example
1. Physics: Should we use Hamiltonian or Lagrangian mechanics instead of Newtonian?
2. Chemistry: Should we analyze atomic behavior or use other approaches?

As for AI/ML, a similar question is then “How should we build our models differently?”

▶ Based on experience/intuition/small-scale trial/etc.?

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 5 / 26

Consequences

You might not realize, but this sort of meta question is quite important:

▶ Physics/chemistry: wrong approaches might lead to a long detour
▶ AI/ML: wrong models might lead to poor performance, wasted resources, etc.

To illustrate, let’s think about what Scaling Law tells us:

Example (Scaling Law [Kap+20], in plain English)
If we throw more data & GPUs, we’re (sort of) guaranteed to have a better model.

Basically, this tells us that:

▶ How to solve a problem more efficiently, without expending brain power (expensive)?

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 6 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 7 / 26

Counterfactual Prediction

All above can be framed as counterfactual predictions:

▶ Don’t want to actually do it just to know what will happen;
▶ Want to have a good estimation before we execute the potentially expensive plan

Example
There are many other directions besides the scaling law:
▶ Meta learning: tuning hyperparameters ⇒ actual learning algorithms
▶ Neural architecture optimization: optimizing architecture ⇒ actual model to train
▶ Data attribution: curating dataset ⇒ actual learned model’s statistics

We focus on the last one, data attribution, in this presentation.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 8 / 26

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 9 / 26

Data Attribution

As previously seen
τf (B) gives the counterfactual effect of f when B is removed from the training set D.

Predicting τf provides a way to understand the final model’s properties, without training it!

Example (Different properties)
▶ Performance: f is validation loss ⇒ predict loss decrease (or increase) when including B in D

▶ Safety: f is loss on safety-critical sample ⇒ ...
▶ Bias: f is a bias metric over under-performed groups ⇒ ...

Data attribution has been explored in many directions:

▶ Data selection/cleaning, data poisoning, fact tracing, data compensation, etc.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 10 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 11 / 26

Models Parametrized by Dataset Weight

We now see how one can estimate τf . One idea is the following:

Intuition
Parametrize D by a default weight vector w = 1/n ∈ Rn for the data points zi ’s.
⇒ Model trained on (weighted) D is a function of w : θ̂w = argminθ

∑
zi∈D wiℓ(zi ; θ)

⇒ Taylor-expand θ̂w around w = 1/n ⇔ estimating perturbation effects (D → D ′)

...

w

1

1
n

2
3

n

A(w , θ(0))
θ(0)

θ̂1/n

D

...

w

1

1
n

2
3

n

A(w ′, θ(0))
θ(0)

θ̂w ′

D ′

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 12 / 26

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 13 / 26

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let θ̂ = θ̂1/n be the ERM trained on D and Hθ̂ =
1
n

∑
zi∈D ∇2

θℓ(zi ; θ̂) be the empirical Hessian.
The influence function of upweighting zi ∈ D on the target function f is:

I(zi , f) :=
df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂)
⊤ dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= −∇θf (θ̂)
⊤H−1

θ̂
∇θℓ(zi ; θ̂).

...

w

1
2

n

A(w ′, θ(0))
θ(0)

θ̂w ′ =: θ̂+ϵzi

θ̂w ′

θ̂ = θ̂1/n

θ̂w ′ − θ̂ ≈ ϵ×−H−1
θ̂

∇θℓ(zi ; θ̂)︸ ︷︷ ︸
dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

ϵ
i w ′ ⇔ D + ϵzi

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 14 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 15 / 26

Computing Influence Function

As previously seen (Influence function)
Counterfactual prediction of removing zi is ∆f = τf ({zi}) ≈ ϵ · I(zi , f) with ϵ = −1/n, where

I(zi , f) = −∇θf (θ̂)
⊤H−1

θ̂
∇θℓ(zi ; θ̂), Hθ̂ =

1
n

∑
zi∈D

∇2
θℓ(zi ; θ̂)

The main computation is the inverse-Hessian-vector-product H−1
θ̂

×∇θℓ(zi ; θ̂), or iHVP:

Remark
Once iHVP is solved, τf ({zi}) can be computed by efficient inner-product with ∇θf .

▶ Vector ∇θℓ(zi ; θ̂) ∈ Rp: first-order gradient for all zi ∈ D

▶ Inverse-Hessian H−1
θ̂

∈ Rp×p: inverting a p × p second-order Hessian for all zi ∈ D

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 16 / 26

Bottleneck of Influence Function

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓ(zi ; θ̂)}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(np2 + p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓ(zi ; θ̂) ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(np2 + p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 17 / 26

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, the fisher information matrix (FIM) Fθ̂ equals Hθ̂, where

Fθ̂ :=
1
n

∑
zi∈D

∇θℓ(zi ; θ̂)∇θℓ(zi ; θ̂)
⊤.

We see that using FIM approximation:

▶ No higher-order differentiation; computation drops from O(np2) to O(np) (overlaps with vectors)

▶ Inverting still requires O(p3), as well as storage O(p2)

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 18 / 26

Scalable Approximation: Block-Diagonal FIM

To further speed up inverse-Hessian, we need to break Fθ̂:

▶ Structural assumption: layers are independent ⇒ Fθ̂ is block-diagonal (and hence F−1
θ̂

)

▶ Inverse and product can now be done layer-wise!

If you enjoy figures...

∇θℓ(zi ; θ̂)

Inverse Product

Fθ̂
F−1
θ̂

Inverse Product

Fθ̂
F−1
θ̂

∇θℓ(zi ; θ̂)

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 19 / 26

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np+ p3/L2 + p2/L) = O(np+ p3/L2)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough?

▶ Computation-wise, inverse-FIM O(p3/L2) might be okay?
▶ Storing vectors is challenging: O(np) for 1B model with 1B token dataset ≈ 4PB

Intuition
The p is the key bottleneck for storage, as it is potentially large.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 20 / 26

Random

The main bottleneck now becomes potentially large p for ∇θℓ(zi ; θ̂):
▶ If we can operate with vectors of dimension k ≪ p

⇒ Storage: replacing p with k! Computation: with some overhead

Intuition

As ML people usually do, we randomly project ∇θℓ(zi ; θ̂) ∈ Rp down to some k ≪ p.

This idea is known as Random [Woj+16]. Combining with all previous approximation on FIM:

Remark (Main bottleneck for block-diagonal FIM with Random (LoGra [Cho+24]))
Respectively, the main bottlenecks are:
▶ Computation: O(np + p3/L2) → O(np + k3/L2)(+O(npk/L)!!)

▶ Storage: O(np + p2/L) → O(nk + k2/L)

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 21 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 22 / 26

What’s Next?

This concludes the current SOTA data attribution algorithms based on influence function.

Problem (Computational overhead)
LoGra has an additional O(npk/L) overhead. Can we optimize this?

Yes! By tailoring the projection method specifically to per-sample gradients ∇θℓ(zi ; θ̂):

Theorem (GraSS & FactGraSS [Hu+25])
There is a sublinear compression-based influence function algorithm with an overhead of

O(nk ′), where k < k ′ ≪ p.

This extends to highly-optimized linear layers, where layer-wise gradients are never materialized.

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 23 / 26

Q&A Time!

Thanks! Ask anything you want!

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 24 / 26

Table of Content

Introduction

Data Attribution

Influential Function

Practical Consideration of Influence Function

Conclusion

References

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 25 / 26

References

[Cho+24] Sang Keun Choe et al. What Is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence
Functions. May 22, 2024. doi: 10.48550/arXiv.2405.13954. arXiv: 2405.13954 [cs]. url:
http://arxiv.org/abs/2405.13954 (visited on 09/14/2024).

[Gro+23] Roger Grosse et al. “Studying large language model generalization with influence functions”. In: arXiv preprint
arXiv:2308.03296 (2023).

[Hu+25] Pingbang Hu et al. “GraSS: Scalable Influence Function with Sparse Gradient Compression”. In: arXiv
preprint arXiv:2505.18976 (2025).

[Kap+20] Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361 (2020).

[KL17] Pang Wei Koh and Percy Liang. “Understanding black-box predictions via influence functions”. In:
International conference on machine learning. PMLR. 2017.

[Woj+16] Mike Wojnowicz et al. ““Influence Sketching”: Finding Influential Samples in Large-Scale Regressions”. In:
2016 IEEE International Conference on Big Data (Big Data). 2016 IEEE International Conference on Big
Data (Big Data). Washington DC,USA: IEEE, Dec. 2016, pp. 3601–3612. isbn: 978-1-4673-9005-7. doi:
10.1109/BigData.2016.7841024. url: http://ieeexplore.ieee.org/document/7841024/ (visited on
12/06/2023).

PH, JM, WT, HZ, JM Data Attribution & GraSS [Hu+25] July 25, 2025 26 / 26

https://doi.org/10.48550/arXiv.2405.13954
https://arxiv.org/abs/2405.13954
http://arxiv.org/abs/2405.13954
https://doi.org/10.1109/BigData.2016.7841024
http://ieeexplore.ieee.org/document/7841024/

	Introduction
	Data Attribution
	Influential Function
	Practical Consideration of Influence Function
	Conclusion
	References
	References

