GraSS : Scalable Influence Function with Sparse Gradient Compression A Foray to Data Attribution and Influence Function

Pingbang Hu¹ Joseph Melkonian² Weijing Tang³ Han Zhao¹ Jiaqi W. Ma¹

¹University of Illinois Urbana-Champaign ²Womp Labs ³Carnegie Mellon University

July 25, 2025

Data Attribution & GraSS [Hu+25]

- Introduction
- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

Table of Content

- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

Predicting the Future

We start with some abstract nonsense:

Problem

What's the most fundamental aspect in all scientific problems?

Lots of the time, the answer I would give is *prediction*:

Example

- 1. Physics: What would happen if we throw a ball with the given initial condition?
- 2. Chemistry: What properties emerge if we combine these two materials?

What about Computer Science, or more specifically, AI/ML nowadays? Seems straightforward:

- We build models to predict all sorts of things:
- E.g., image classification, text completion, weather forecast, etc.

PH, JM, WT, HZ, JM

Data Attribution & GraSS [Hu+25]

One Level Up: A Meta Question

What if we zoom out and ask a *meta* question:

Problem

What's the most fundamental aspect in solving all scientific problems?

Now this varies based on the subject:

Example

- 1. Physics: Should we use Hamiltonian or Lagrangian mechanics instead of Newtonian?
- 2. Chemistry: Should we analyze atomic behavior or use other approaches?

As for AI/ML, a similar question is then "How should we build our models differently?"

Based on experience/intuition/small-scale trial/etc.?

You might not realize, but this sort of meta question is quite important:

- > Physics/chemistry: wrong approaches might lead to a long detour
- > AI/ML: wrong models might lead to poor performance, wasted resources, etc.

To illustrate, let's think about what *Scaling Law* tells us:

Example (Scaling Law [Kap+20], in plain English)

If we throw more data & GPUs, we're (sort of) guaranteed to have a better model.

Basically, this tells us that:

▶ How to solve a problem more efficiently, without expending brain power (expensive)?

2

- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

All above can be framed as *counterfactual predictions*:

- Don't want to actually do it just to know what will happen;
- ▶ Want to have a good estimation before we execute the potentially expensive plan

Example

There are many other directions besides the scaling law:

- ▶ Meta learning: tuning hyperparameters ⇒ actual learning algorithms
- ▶ Neural architecture optimization: optimizing architecture ⇒ actual model to train
- \blacktriangleright Data attribution: curating dataset \Rightarrow actual learned model's statistics

We focus on the last one, *data attribution*, in this presentation.

Data attribution algorithms quantify *counterfactual effect* for **dataset perturbation**:

- Say we have a model $\hat{ heta}_D$ trained on D, with $p = |\hat{ heta}_D|$ and n = |D|
- ▶ Given a quantity of interest—a *target* function f(D) of $\hat{\theta}_D$, e.g., validation loss
- ▶ Predict how f will change, if the dataset D is *counterfactually* perturbed to D':

$$\Delta f = f(D') - f(D).$$

Popular methods study this from a fine-grained, localized viewpoint:

- 1. Consider D' of the form $D' = D \setminus B$ for a small batch of samples B (or $D' = D \cup B$)
- 2. For each possible B, we predict $\tau_f(B) := f(D \setminus B) f(D)$ (or $f(D \cup B) f(D)$)

Popular choice of B: $B_i = \{z_i\}$ for $z_i \in D$, i.e., $\tau_f(B_i)$ provides the *point-wise* effect.

Σ

As previously seen

 $\tau_f(B)$ gives the counterfactual effect of f when B is removed from the training set D.

Predicting τ_f provides a way to understand the final model's properties, without training it!

Example (Different properties)

- Performance: f is validation loss \Rightarrow predict loss decrease (or increase) when including B in D
- Safety: f is loss on safety-critical sample \Rightarrow ...
- ▶ Bias: *f* is a bias metric over under-performed groups \Rightarrow ...

Data attribution has been explored in many directions:

▶ Data selection/cleaning, data poisoning, fact tracing, data compensation, etc.

- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

Models Parametrized by Dataset Weight

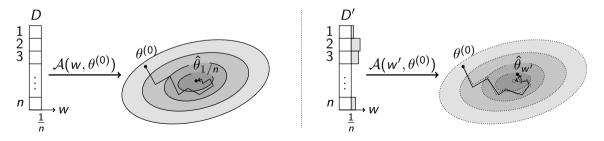
We now see how one can estimate τ_f . One idea is the following:

Intuition

Parametrize D by a default weight vector $w = 1/n \in \mathbb{R}^n$ for the data points z_i 's.

 \Rightarrow Model trained on (weighted) D is a function of w: $\hat{\theta}_w = \arg \min_{\theta} \sum_{z_i \in D} w_i \ell(z_i; \theta)$

 \Rightarrow Taylor-expand $\hat{ heta}_w$ around $w = 1/n \Leftrightarrow$ estimating perturbation effects (D o D')



Counterfactual Prediction from Freshman Calculus

To estimate $\tau_f(\{z_i\}) = f(D \setminus \{z_i\}) - f(D)$:

▶ Write
$$D \setminus \{z_i\}$$
 as $D - \frac{1}{n}z_i \Rightarrow \tau_f(\{z_i\}) = f(D + \epsilon z_i) - f(D)$ with $\epsilon = -1/n!$

Since $\hat{\theta}_w$ is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

$$\Delta f = \tau_f(\{z_i\}) = \left[f(D + \epsilon z_i) - f(D)\right]\Big|_{\epsilon = -\frac{1}{n}} \approx \left.\epsilon\right|_{\epsilon = -\frac{1}{n}} \cdot \left.\frac{\mathrm{d}f(\hat{\theta}_{+\epsilon z_i})}{\mathrm{d}\epsilon}\right|_{\epsilon = 0}$$

2. From chain rule:

$$\frac{\mathrm{d}f(\hat{\theta}_{+\epsilon z_i})}{\mathrm{d}\epsilon}\bigg|_{\epsilon=0} = \nabla_{\theta}f(\hat{\theta}_{+\epsilon z_i})^{\top}\bigg|_{\epsilon=0} \cdot \left.\frac{\mathrm{d}\hat{\theta}_{+\epsilon z_i}}{\mathrm{d}\epsilon}\right|_{\epsilon=0} = \nabla_{\theta}f(\hat{\theta}_{1/n})^{\top} \cdot \left.\frac{\mathrm{d}\hat{\theta}_{+\epsilon z_i}}{\mathrm{d}\epsilon}\bigg|_{\epsilon=0}$$

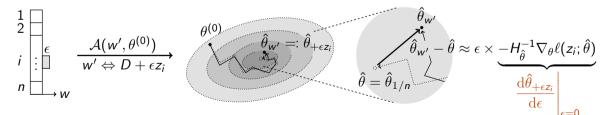
.

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let $\hat{\theta} = \hat{\theta}_{1/n}$ be the ERM trained on D and $H_{\hat{\theta}} = \frac{1}{n} \sum_{z_i \in D} \nabla_{\theta}^2 \ell(z_i; \hat{\theta})$ be the empirical Hessian. The influence function of upweighting $z_i \in D$ on the target function f is:

$$\mathcal{I}(z_i, f) \coloneqq \left. \frac{\mathrm{d}f(\hat{\theta}_{+\epsilon z_i})}{\mathrm{d}\epsilon} \right|_{\epsilon=0} = \nabla_{\theta}f(\hat{\theta})^{\top} \left. \frac{\mathrm{d}\hat{\theta}_{+\epsilon z_i}}{\mathrm{d}\epsilon} \right|_{\epsilon=0} = -\nabla_{\theta}f(\hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta}\ell(z_i; \hat{\theta}).$$



- Introduction
- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

Computing Influence Function

As previously seen (Influence function)

Counterfactual prediction of removing z_i is $\Delta f = \tau_f(\{z_i\}) \approx \epsilon \cdot \mathcal{I}(z_i, f)$ with $\epsilon = -1/n$, where

$$\mathcal{I}(z_i, f) = -\nabla_{\theta} f(\hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} \ell(z_i; \hat{\theta}), \quad H_{\hat{\theta}} = \frac{1}{n} \sum_{z_i \in D} \nabla_{\theta}^2 \ell(z_i; \hat{\theta})$$

The main computation is the *inverse-Hessian-vector-product* $H_{\hat{a}}^{-1} \times \nabla_{\theta} \ell(z_i; \hat{\theta})$, or iHVP:

Remark

Once iHVP is solved, $\tau_f(\{z_i\})$ can be computed by efficient inner-product with $\nabla_{\theta} f$.

- ▶ Vector $\nabla_{\theta} \ell(z_i; \hat{\theta}) \in \mathbb{R}^p$: first-order gradient for all $z_i \in D$
- ▶ Inverse-Hessian $H_{\hat{\theta}}^{-1} \in \mathbb{R}^{p \times p}$: inverting a $p \times p$ second-order Hessian for all $z_i \in D$

Bottleneck of Influence Function

There are several bottlenecks for iHVP. First, the *computation*:

- Computing all vectors $\{\nabla_{\theta} \ell(z_i; \hat{\theta})\}_{i=1}^n$ requires O(np)
- Computing inverse-Hessian $H_{\hat{\theta}}^{-1}$ requires $O(np^2 + p^3)$
- Computing product requires $O(np^2)$

Next, the issue of *storage*:

- ▶ Storing all vectors $\{\nabla_{\theta}\ell(z_i; \hat{\theta}) \in \mathbb{R}^p\}_{i=1}^n$ requires O(np).
- Storing inverse-Hessian $H_{\hat{\theta}}^{-1}$ requires $O(p^2)$

Remark (Main bottleneck)

Respectively, the main bottlenecks are:

• Computation: inverse-Hessian $O(np^2 + p^3)$

Storage: vectors + inverse-Hessian O(np + p²)

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, the fisher information matrix (FIM) $F_{\hat{\theta}}$ equals $H_{\hat{\theta}}$, where

$$F_{\hat{\theta}} \coloneqq \frac{1}{n} \sum_{z_i \in D} \nabla_{\theta} \ell(z_i; \hat{\theta}) \nabla_{\theta} \ell(z_i; \hat{\theta})^{\top}.$$

We see that using FIM approximation:

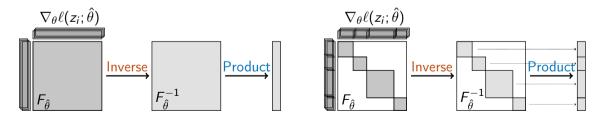
▶ No higher-order differentiation; computation drops from $O(np^2)$ to O(np) (overlaps with vectors)

▶ Inverting still requires $O(p^3)$, as well as storage $O(p^2)$

To further speed up inverse-Hessian, we need to break $F_{\hat{\theta}}$:

- ► Structural assumption: layers are independent \Rightarrow $F_{\hat{\theta}}$ is block-diagonal (and hence $F_{\hat{\theta}}^{-1}$)
- Inverse and product can now be done layer-wise!

If you enjoy figures ...



Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Respectively, the main bottlenecks are:

- Computation: vectors + inverse-FIM + product $O(np + p^3/L^2 + p^2/L) = O(np + p^3/L^2)$
- Storage: vectors + inverse-FIM O(np + p²/L)

Is this enough?

- Computation-wise, inverse-FIM $O(p^3/L^2)$ might be okay?
- Storing vectors is challenging: O(np) for 1B model with 1B token dataset \approx 4PB

Intuition

The p is the key bottleneck for storage, as it is potentially large.

Random

The main bottleneck now becomes potentially large p for $\nabla_{\theta} \ell(z_i; \hat{\theta})$:

- ▶ If we can operate with vectors of dimension $k \ll p$
- \Rightarrow Storage: replacing p with k! Computation: with some overhead

Intuition

As ML people usually do, we randomly project $\nabla_{\theta}\ell(z_i; \hat{\theta}) \in \mathbb{R}^p$ down to some $k \ll p$.

This idea is known as Random [Woj+16]. Combining with all previous approximation on FIM:

Remark (Main bottleneck for block-diagonal FIM with Random (LoGra [Cho+24])

Respectively, the main bottlenecks are:

- **Computation**: $O(np + p^3/L^2) \rightarrow O(np + k^3/L^2)(+O(npk/L)!!)$
- Storage: $O(np + p^2/L) \rightarrow O(nk + k^2/L)$

- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

This concludes the current SOTA data attribution algorithms based on influence function.

Problem (Computational overhead)

LoGra has an additional O(npk/L) overhead. Can we optimize this?

Yes! By tailoring the projection method specifically to per-sample gradients $\nabla_{\theta} \ell(z_i; \hat{\theta})$:

Theorem (GraSS & FactGraSS [Hu+25])

There is a sublinear compression-based influence function algorithm with an overhead of

O(nk'), where $k < k' \ll p$.

This extends to highly-optimized linear layers, where layer-wise gradients are never materialized.

Thanks! Ask anything you want!

- Data Attribution
- Influential Function
- Practical Consideration of Influence Function
- Conclusion
- References

- [Cho+24] Sang Keun Choe et al. What Is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions. May 22, 2024. DOI: 10.48550/arXiv.2405.13954. arXiv: 2405.13954 [cs]. URL: http://arxiv.org/abs/2405.13954 (visited on 09/14/2024).
- [Gro+23] Roger Grosse et al. "Studying large language model generalization with influence functions". In: *arXiv preprint arXiv:2308.03296* (2023).
- [Hu+25] Pingbang Hu et al. "GraSS: Scalable Influence Function with Sparse Gradient Compression". In: *arXiv* preprint arXiv:2505.18976 (2025).
- [Kap+20] Jared Kaplan et al. "Scaling laws for neural language models". In: arXiv preprint arXiv:2001.08361 (2020).
- [KL17] Pang Wei Koh and Percy Liang. "Understanding black-box predictions via influence functions". In: International conference on machine learning. PMLR. 2017.
- [Woj+16] Mike Wojnowicz et al. ""Influence Sketching": Finding Influential Samples in Large-Scale Regressions". In: 2016 IEEE International Conference on Big Data (Big Data). 2016 IEEE International Conference on Big Data (Big Data). Washington DC,USA: IEEE, Dec. 2016, pp. 3601–3612. ISBN: 978-1-4673-9005-7. DOI: 10.1109/BigData.2016.7841024. URL: http://ieeexplore.ieee.org/document/7841024/ (visited on 12/06/2023).