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Abstract

This is the solution I write when organizing the reading group on Roman Vershynin’s High Dimen-
sional Probability [Ver24]. While we aim to solve all the exercises, occasionally we omit some due to

either 1.) simplicity; 2.) difficulty; or 3.) skipped section. Additionally, it may contain factual and/or
typographic errors.
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Appetizer: using probability to cover a
geometric set

Week 1: Appetizer and Basic Inequalities

Problem (Exercise 0.0.3). Check the following variance identities that we used in the proof of The-
orem 0.0.2.

2 k
: ] = > EllZl3).

(a) Let Z1,...,Z be independent mean zero random vectors in R™. Show that
k
> 7
- 2

E
j=1

(b) Let Z be a random vector in R™. Show that

E[l|lZ — E[Z]|I3) = E[|1Z]|5] - IE[Z]]]3-

Answer. (a) If Z1,..., Zy are independent mean zero random vectors in R™, then
2 2 2
k n k
2|32 =53 (D@ | =35 | (D@ |
j=1 ) i=1 \j=1 j=1

From the assumption, E [(Z;);(Z;/):] = E [(Z;);]E [(Z;7):;] = 0, hence

k

,ZE [112;113]

J

n

> (Z);

i=1

proving the result.

(b) If Z is a random vector in R™, then

E[|Z-E[Z]|2] =E

1=1

I
M:

E [2? - 2Z;E [Z)] + (E [Z:])?]

E (23] —221@ Z—]+§:E[Z]2

IIZIH ||E[ H|2~

1

o
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— =

E

19 Jan. 2024



Week 1: Appetizer and Basic Inequalities

Problem (Exercise 0.0.5). Prove the inequalities

ny\m n " /n en\m
— < < <|—
(m) - <m> - Z <k> - (m)
k=0
for all integers m € [1,n].
Answer. Fix some m € [1,n]. We first show (n/m)™ < (™). This is because

n/m T nm—
( 7)<1
( i \m =

as —L J] > 2 for all j. The second inequality ( ) <o (Z) is trivial since (Z) > 1 for all k. The
last 1nequahty is due to

pe A WIS

m k=0 "
®
Problem (Exercise 0.0.6). Check that in Corollary 0.0.4,
(C + CeN)V/T
suffice. Here C' is a suitable absolute constant.
Answer. Omit. ®

CONTENTS 4



Chapter 1

Preliminaries on random variables

1.1 Basic quantities associated with random variables

No Exercise!

1.2 Some classical inequalities

Problem (Exercise 1.2.2). Prove the following extension of Lemma 1.2.1, which is valid for any
random variable X (not necessarily non-negative):

E[X]:/OOOIP’(X>t)dt—/O P(X < t)dt.

— 00

Answer. Separating X into the plus and minus parts would do the job. Specifically, let X = X, —X_
where X; = max(X,0) and X_ = max(—X,0), both are non-negative. Then, we see that by
applying Lemma 1.2.1,

Pr(t < Xy)dt — / Pr(t < X_)dt
0

0
Pr(X > t)dt —/ Pr(X < t)dt.

— 00

o0

E
b, m

:/0 Pr(X>t)dt—/0 Pr(X < —t) dt
/

Problem (Exercise 1.2.3). Let X be a random variable and p € (0,00). Show that
E[|X 7] :/ ptPTIP(|X| > t) dt
0

whenever the right-hand side is finite.

Answer. Since |X| is non-negative, from Lemma 1.2.1, we have

IE[|X|”]:/O Pr(t<|X\p)dt:/O ptPLPr(|X]| > 1) dt

where we let ¢ < tP, hence dt + ptP~1dt. ®



Week 2: Basic Inequalities and Limit Theorems

Week 2: Basic Inequalities and Limit Theorems

Problem (Exercise 1.2.6). Deduce Chebyshev’s inequality by squaring both sides of the bound | X — 24 Jan. 2024

u| >t and applying Markov’s inequality.
Answer. From Markov’s inequality, for any ¢ > 0,

E[X — u2] o2
Pr(X gl > 8) = Pr(X — P > %) < TAX —#l] _ o

2 12
®
1.3 Limit theorems
Problem (Exercise 1.3.3). Let X1, X, ... be a sequence of i.i.d. random variables with mean p and
finite variance. Show that
1 o 1
E[N;Xi—ﬂ :O(\/N) as N — oo.
Answer. We see that
) ) ’ g & o
E l‘N;Xi—u] < |E ‘N;Xi—u = | Var N;Xil v
As 0 < oo is a constant, the rate is exactly O(1/vV/N). ®

CHAPTER 1. PRELIMINARIES ON RANDOM VARIABLES 6



Chapter 2

Concentration of sums of independent
random variables

Week 3: More Powerful Concentration Inequalities
2.1 Why concentration inequalities?
Problem (Exercise 2.1.4). Let g ~ N(0,1). Show that for all ¢ > 1, we have
1 2 1 1 2
E[g?1,5i] =t ——e P /24 P(g>1t) < (t> —t/2,
[g g>t] \/%6 (g ) = n \/%6

Answer. Denote the standard normal density as

Since we have ®'(z) = —z®(z), by integration by part,
E [9219>t] :/ 21,5, ®(z) dz
0 o0
—/ 2@ (z) dx
¢

— 2®(z)|° + /too ®(z)dx

1 e
=t-—e /24 P(g > 1),
Tor (9>1)

which gives the first equality. Furthermore, as t > 1, we trivially have

/tocq)(x)dxg/toof@(x)dx—1/too—q>'(x)dx—q)it),

implying that

1 & 1 1
E [¢®Lgst] =t - Fe’tz/z —|—/ b(z)dx < <t + > —eft2/2,
v t

which gives the second inequality.

2.2 Hoeffding’s inequality

2 Feb. 2024



Week 3: More Powerful Concentration Inequalities

Problem (Exercise 2.2.3). Show that

cosh(z) < exp(z?/2) for all z € R.

Answer. Omit. ®

The next exercise is to prove Theorem 2.2.5 (Hoeffding’s inequality for general bounded random
variables), which we restate it for convenience.

Theorem 2.2.1 (Hoeffding's inequality for general bounded random variables). Let Xi,..., Xy be
independent random variables. Assume that X; € [m;, M;] for every i. Then, for any ¢ > 0, we

have
N 2t2
P (zm ~E[X)) > t) < eXP(‘ SN (M- mi>2> '

i=1

Problem (Exercise 2.2.7). Prove the Hoeffding’s inequality for general bounded random variables,
possibly with some absolute constant instead of 2 in the tail.

Answer. Since raising both sides to p-th power doesn’t work since we’re now working with sum of
random variables, so we instead consider the MGF trick (also known as Crarmer-Chernoff method):

Lemma 2.2.1 (Crarmer-Chernoff method). Given a random variable X,

E [MX-#)]
—u>t) = AX=p) > Aty < S
P(X —u>t)=Ple >eM) < )I\I;% o

Proof. This directly follows from the Markov’s inequality. ]

Hence, we see that

P (i(Xi ~E[Xi]) > t) < inf e™ME

A>0
i=1 >

exp (A > (X —E [Xi]))]

i=1

N
I —At L .
= infe gexp(MXz E [X4])).

So now everything left is to bound E [exp(A(X; — E [X;]))]. Before we proceed, we need one lemma.

Lemma 2.2.2. For any bounded random variable Z € [a, b],

2
Var[Z]g(b a)-
4
Proof. Since
a+b a+b\’ (b—a)?
Var [Z] = Var |Z — 5 <E|(Z- 5 < 7

Claim. Given X € [a,b] such that E [X] =0, for all A € R,

8

E [e**] < exp (XZM).

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 8



Week 3: More Powerful Concentration Inequalities

Proof. We first define ¢(A) = InE [¢*¥], and compute

E [XerX] < E [X2e2X] (IE [Xer] )2

V=g ELX] |\ B

Now, observe that v is the variance under the law of X re-weighted by %7 ie., by a
’ Efe*X]

change of measure, consider a new distribution Py (w.r.t. the original distribution P of X) as

X
dPy(z) == Ep o] dP(x),
then
Ep [XerX TeM®
W (\) = ]HEEE [GAX]] _ / £ o AP = Ex, [X]
and

2 AX AXT\
w“”:Eﬁﬁgﬂ}‘<%$imH> = Ep, [X?] ~Er, [X)* = Varp, [X].

From Lemma 2.2.2, since X under the new distribution P, is still bounded between a and
b,
(b—a)?

1

$"(A) = Varp, [X] <

Then by Taylor’s theorem, there exists some X € [0, A] such that

$O) = 9(0) + YO+ 38 ()N = 24 ()N

since 1(0) = ¢/(0) = 0. By bounding " (A\)A2/2, we finally have

(b_a)Q)\Z — )2 (b—a)2

1
InE [eAX] = ’(/J()\) S 5 . 4 ] ’

raising both sides by e shows the desired result. ®

Say given X; € [m;, M;] for every i, then X; — E [X;] € [m; — E [X;], M; — E [X;]] with mean 0
for every 7. Then given any of the two bounds, for all A € R,

M, —m.;)?
E [e,\(xi—uz[xi])} Sexp()\2( 5 8mz) >

Then we simply recall that

N N
P <Z(Xz -E[X;]) = t> = inf e HGXP()\(Xi -E[Xi]))
i=1

: A>0
i=1

N

M; —m;)?

< inf —At )\2(171
< (e St )

< 4t2 . 242 )
=exp| —
SV LMy —mg)? SN (M — my)?

- < 212 >
S (M —m;)?

since infimum is achieved at A\ = 4t/(Z£\;1(Mi —m;)?). ®

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 9



Week 3: More Powerful Concentration Inequalities

Problem (Exercise 2.2.8). Imagine we have an algorithm for solving some decision problem (e.g., is
a given number p a prime?). Suppose the algorithm makes a decision at random and returns the
correct answer with probability % + 6 with some § > 0, which is just a bit better than a random
guess. To improve the performance, we run the algorithm N times and take the majority vote.
Show that, for any € € (0, 1), the answer is correct with probability at least 1 — ¢, as long as

1 1
N> —In(-]).
— 202 n(6>

Answer. Consider Xq,..., Xy S Ber(% + §), which is a series of indicators indicting whether the
random decision is correct or not. Note that E [X;] = £ + 4.

We see that by taking majority vote over N times, the algorithm makes a mistake if sz\; X; <
N/2 (let’s not consider tie). This happens with probability

N N 2
P (Z X; < ;V) =P (Z(Xi -E[X)]) < —N6> < exp(—Q(NN‘S)) = 72N

i=1

from Hoeffding’s inequality.” Requiring e =2V ¥ <eis equivalent to requiring N > # In(1/e). ®

2Note that the sign is flipped. However, Hoeffding’s inequality still holds (why?).

Problem (Exercise 2.2.9). Suppose we want to estimate the mean p of a random variable X from
a sample Xi,..., Xy drawn independently from the distribution of X. We want an e-accurate
estimate, i.e., one that falls in the interval (u — €, + €).

(a) Show that a sample of size N = O(c?/¢?) is sufficient to compute an e-accurate estimate with
probability at least 3/4, where s;?> = Var[X].

(b) Show that a sample of size N = O(log(6')o?/e?) is sufficient to compute an e-accurate
estimate with probability at least 1 — 4.

Answer. (a) Consider using the sample mean g = + vazl X; as an estimator of u. From the
Chebyshev’s inequality,
o?/

e

By requiring 02/(Ne?) < 1/4, i.e., N > 402 /e? = O(0?/€?), suffices.

P(la—pl > e <

(b) Consider gathering k estimator from the above procedure, i.e., we now have fiy, ..., fix such
that each are an e-accurate mean estimator with probability at least 3/4. This requires
k-40?%/e2 = O(ko?/e?) samples. We claim that the median fi = median(fi, ..., ) is an
e-accurate mean estimator with probability at least 1 —§ for some k (depends on §). Consider
a series of indicators X; = 1}, >, indicating if fi; is not e-accurate. Then X; ~ Ber(1/4).
Then, our median estimator [ fails with probability

k

k
P (| — pl >e):IP<ZXi> ;) =P<Z(Xi—E[Xi]) > Z)

i=1

as E[X;] = 1/4. From Hoeffding’s inequality, the above probability is bounded above by
exp(—2(k/4)?/k), setting it to be less than § we have

exp<—2(k£4)2) <§on (;) > g & k=0(n(57Y)),

i.e., the total number of samples required is O(ko?/e?) = O(In(671)0?/€?).

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 10



Week 3: More Powerful Concentration Inequalities

Problem (Exercise 2.2.10). Let Xi,..., Xy be non-negative independent random variables with
continuous distributions. Assume that the densities of X; are uniformly bounded by 1.

(a) Show that the MGF of X satisfies

Elexp(—tX;)] < — for all t > 0.

~+ | =

(b) Deduce that, for any € > 0, we have

N
P (Z T = eN) < (ee)N.

Answer. (a) Since X;’s are non-negative and the densities fx, < 1 uniformly, for every ¢ > 0,

0071

oo o0 1
E [exp(—tX;)] = / e fx, (r)dz < / e dr = —=e 7™
0 0 t 0

(b) From Chernofl’s inequality, for any € > 0,
N N
P X, <eN| =P - *>_N

inf e*VE
A>0

N X,
= )1\1;% e)‘N Z[[1]}3 |:€Xp <—>\6>:|
Al
}\r;fo Ca };[1 X Part (a) with t = A/e

nt ()
>)N

IN

IN

= (ee

since the infimum is achieved when A = 1.

2.3 Chernoff’s inequality

Problem (Exercise 2.3.2). Modify the proof of Theorem 2.3.1 to obtain the following bound on the
lower tail. For any ¢ < u , we have

P(Sy < t) < e " (%)t

Answer. A direct modification is that considering for any A > 0,
N
P(Sy <t) =P(-Sy > —t) =P(e ™% > ™) < M [] E [exp(-AX;)] .
i=1
A direct computation gives

E[exp(—AX3)] =e i+ (1 —pi) =1+ (e = 1)p; < exp((e_)‘ - 1py),

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 11



Week 4: Chernoff’s Inequality and Degree Concentration

hence
N
P(Sy <t) < e Hexp((e#‘ —1)p;) = eM exp((e#‘ —1)p) = exp(Xt + (e — L)p).
i=1

Minimizing the right-hand side, we see that
-2y _ oA _ . M
t+ (—pe™)=0&t=pe @)\_ln?

achieves the infimum. And since t < p, A > 0 as required, which gives

L t W ., repNt
<t < LR A — By ) =en (Y
P(Sy <t) < exp(tln : + <M 1) ,u> cxp(tln ; +t ,u) e ( )

t
®
Problem (Exercise 2.3.3). Let X ~ Pois(\). Show that for any ¢t > A, we have
A\ ¢
P(X > 1) < e (i) .
Answer. From Chernoff’s inequality, for any 6 > 0, we have
P(X >1t) < e "E [exp(6X)].
Then the Poisson moment can be calculated as
o~ on AN a0 - 9 9
E [exp(6X)] = Ze ety =e Z =€ exp(e’)) = exp((e” — 1)A),
k=0 k=0
hence
A\ ed\’
P(X >t) <e "exp((e? —1)A) = (t) exp(t —A) =e™ (t)
where we take the minimizing 6 = In(t/A) > 0 ast > \. ®

Alternatively, we can also solve Exercise 2.3.3 directly as follows.

Answer. Consider a series of independent Bernoulli random variables X ; for a fixed N such that
the Poisson limit theorem applies to approximate X ~ Pois()), i.e., as N — 0o, max;<n pn,; — 0
and Ay = E [Sy] = A < 00, Sy — Pois(A). From Chernofl’s inequality, for any ¢ > Ay,

t
P(Sy > 1) < e (eAtN> .

We then see that

v\’ A
P(X >¢t) = lim P(Sy >t) < lim e [ X)) =2 (£
N —o0 N —o00 t

since Ay — A as N — oo. ®

Week 4: Chernoft’s Inequality and Degree Concentration

Problem (Exercise 2.3.5). Show that, in the setting of Theorem 2.3.1, for § € (0, 1] we have
B(|Sx — pl > o) < 27

where ¢ > 0 is an absolute constant.

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 12
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Week 4: Chernoff’s Inequality and Degree Concentration

Answer. From Chernoff’s inequality (right-tail), for t = (1 4 6)u, we have

InP(Sy > (1+0)p) < —p+ 1+ 1 +Inpg—In(l+6) —Inpu)
=0p— (14 0)u(ln(l +94))
=pu(d — (14 0)In(1 +9)).

A classic bound for In(1 + 0) is the following.

Claim. For all x > 0,

2x
<In(1 .
2+x_n( +2)

Proof. As (1+=x/2)2=1+z+2%/4>1+z,

! 1 1 = x I
log(l+ o)) = —2 1+z/2)2 (Hw/?) '

Note that log(1 + z) = /(1 4+ x/2) =0 at = 0, so for all z > 0

x
log(1 >
sl o) 2 o
®
Hence, as our ¢ € (0, 1], we have
26 102 102
InPP > (1 < -1 In(1 < —u(l —— = < —-——.
DB(Si 2 (1+8)4) < u(6 — (1+8) (1 + ) < 6 — 1 + §) 520 = — L2 < 10
Similarly, from Chernoff’s inequality (left-tail), for t = (1 — d)u, we have
InP(Sy <1—-0)p) < —p+1—-)p(l+Inpg—In(1 —90) —Inpw)
=—6p—(1—=9)uln(l —9)
=u(=0—(1-9)In(1 —9)).
Another classic bound for In(1 — 9) is the following.
Claim. For all z € [-1,1),
2
—r — % <In(1 — ).
Proof. This one is even easier: since In(1 —z) = —x — 22/2 — 23/3 — .. .. ®
Hence, if § € (0, 1],” we have
52 /"52
InP(Sy < (1—=0)p) <p(=d—(1=06)In(1 —9)) < —pd — p(l —9) (—(5 - 2) < ==
Combining two tails, we then see that
P(|Sn — p| > 6p) < P(Sy > (14 0)p) +P(Sn < (1 —=6)p)
2 2
< exp <—M§) + exp <_,u;$>
(18°
< 2exp 25
oo
which almost complete the proof for ¢ = 1/3. ®

“When 6 =1, nP(Sy < (1 —=4d)p) < —”752 holds trivially since P(Sy = 0) < exp(—p/2).

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 13



Week 4: Chernoff’s Inequality and Degree Concentration

Problem (Exercise 2.3.6). Let X ~ Pois(\). Show that for ¢ € (0, A], we have
ct?
P(|X — A\ >t) < 2exp - )

Answer. Fix some t =: 6\ € (0, \] for some § € (0, 1] first. Consider a series of independent Bernoulli
random variables X ; for a fixed N such that the Poisson limit theorem applies to approximate
X ~ Pois(A), i.e., as N — 00, max;<ny pn,; — 0 and Ay :=E [Sy] = X < 00, Sy — Pois(A). From
multiplicative form of Chernoft’s inequality, for ¢y := d Ay,

2
P(|Sny — An| 2 tny = 0An) < 2€Xp<—c>\tN)-
N

It then follows that from the Poisson limit theorem,
PX — A >#) = Jim P(|Sx — An| > tn) = lim 2exp( -2 ) = 2exp( =&
- o Ngnoo N Ni= )= Ngnoo xp AN — e

since ty = ANy — OA =t. ®

Problem (Exercise 2.3.8). Let X ~ Pois(A). Show that, as A\ — oo, we have

X -2

= B N(0,1).

Answer. Since X = Z;‘\:1 X, ~ Pois(\) if X; R Pois(1) for all ¢, from Lindeberg-Lévy central

limit theorem, we have
X-E[X] X-Xgq

NI — N(0,1)
as E [X;] = Var [X;] = 1. ®

2.4 Application: degrees of random graphs

Problem (Exercise 2.4.2). Consider a random graph G ~ G(n, p) with expected degrees d = O(logn).
Show that with high probability (say, 0.9), all vertices of G have degrees O(logn).

Answer. Since d = O(logn), there exists an absolute constant M > 0 such that d = (n — 1)p <
Mlogn for all large enough n. Now, consider some C' > 0 such that eM/C = o < 1. From
Chernoft’s inequality,

C'logn Clogn
ed eM
P(d; > C1 <e @ <e 4= < qCloen,
(di 2 Clogn) < e (Clogn) = (O) =«

Hence, from union bound, we have
P(Vi: d; < Clogn) > 1—naflen,

which can be arbitrarily close to 1 as C' is sufficiently large. ®

Problem (Exercise 2.4.3). Consider a random graph G ~ G(n,p) with expected degrees d = O(1).
Show that with high probability (say, 0.9), all vertices of G have degrees

0 logn '
loglogn

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 14



Week 4: Chernoff’s Inequality and Degree Concentration

Answer. Since now d = (n — 1)p < M for some absolute constant M > 0 for all large n, from
Chernoff’s inequality,

P dlzcloi Se_d L Se_d M oglogn
loglogn C Jogn Clogn

log logn

for some C' > 0. This implies that

log n

Cloglogn
P(vi:d <0287 )51 pe—d(Mloglogn ,
loglogn Clogn

Now, considering C' = M, we have

_logn log n

_4 (€M loglogn\ “mstoen _y [ eloglogn\ M meten

ne - - < ne €0s 061 .
Clogn log n

Taking logarithm, we observe that

1
logn —d+ M St (1 + logloglogn — loglogn)
n

log log

1
=(1- M)logn—d—l—Mﬂ(l + logloglogn)
loglogn

1 loglog1
1-M(1+ 4 2B OBOBM | —d s —oo
loglogn loglogn

as n — 0o, i.e.,
M loglogn \ Cmetin
eM loglogn oglogn
ne—d [ £21108108n -0,
Clogn

which is what we want to prove. ®

Problem (Exercise 2.4.4). Cousider a random graph G ~ G(n, p) with expected degrees d = o(logn).
Show that with high probability, (say, 0.9), G has a vertex with degree 10d.

Answer. Omit. ®

Problem (Exercise 2.4.5). Consider a random graph G ~ G(n,p) with expected degrees d = O(1).
Show that with high probability, (say, 0.9), G has a vertex with degree

loglogn

Answer. Firstly, note that the question is ill-defined in the sense that if d = (n —1)p = O(1), it can
be d = 0 (with p = 0), which is impossible to prove the claim. Hence, consider the non-degenerate
case, i.e., d = O(1).

We want to prove that there exists some absolute constant C' > 0 such that with high probability
G has a vertex with degree at least C'logn/loglogn. First, consider separate the graph randomly
into two parts A, B, each of size n/2. It’s then easy to see by dropping every inner edge in A and
B, the graph becomes bipartite such that now A and B forms independent sets. Consider working
on this new graph (with degree denoted as d’), we have

n/2—k k
: n/2 d \* d n\k dF
= k) = _ > (=) 2.
Pld; = k) (k)(n—l) S *(2k> nk " ©
k
_ ok k(PN _a_(d —d
=dn (Qk:) ¢ (2k> c
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Week 5: Sub-Gaussian Random Variables

Let k = C'logn/loglogn such that d/2k > 1/logn for large enough n,” we have

1 d\"
P (d; = lnglooggiz> > e d <2k> > e 4(logn)~* = exp(—d — kloglogn)
= exp(—d — C'logn) = e~ n=C.

Let this probability be ¢, and focus on A. We can then define X; = 14— for i € A, and note
that X; are all independent as A being an independent set. Then, the number of vertices in A,
denoted as X, with degree exactly k follows Bin(n/2, ¢) with X = 5"._ , X; and mean ng/2, variance
ng(l —q)/2. From Chebyshev’s inequality,

€A

o2 nq(l—q)/2 1—q 2 2 2¢4
( ) = (‘ ﬂ‘ = ,U) = 2 (nq/2)2 ng ~— ng - ne—9n—-C nl-C

Now, by setting C' < 1, say 1/2, then
P(X =0) <2012 50

as n — oo, which means P(X > 1) — 1, i.e., with probability 1, there are at least one point with
degree logn/2loglogn. Now, by considering the deleting edges in the beginning, we conclude that

there will be a vertex with degree
0 logn
loglogn

with overwhelming probability. ®

%Since this is equivalent as k < dlogn/2. As k has a loglogn — oo factor in the denominator, the claim holds.

Week 5: Sub-Gaussian Random Variables
2.5 Sub-gaussian distributions

Problem (Exercise 2.5.1). Show that for each p > 1, the random variable X ~ N (0, 1) satisfies
D((1+p)/2)\""
X|p» = E[XPDYP = V2 | —E~2 ) .
Xl = E[xP)H = vE (DD

Deduce that
Xl = O(y/p) as p — .

Answer. We see that for p > 1, we have

1/ > 1 —z2/2 e > 1 —z2/2 e
(E[X|P])P = </ || - Ee dz) = (2/0 ||P - Ee dx)

from the symmetry around 0. Next, consider a change of variable 22 =: u, we have

L% w2 —u2 1 v L[ omnyje a2 g\
=|{2— uPlce™*s —— du = | — u\P~ e ““du
(o= i) =55 )

with another change of variable u/2 =: t,

1 o 1
< / (21) =172, tht> " (1.2@1)/2.2/ t(pl)/zetdt> &
V2T V2 0

() - G )

I'(1/2) = /7, we finally have

= (T(p+1)/2\""
‘ﬁ( (1/2) ) ’

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 16
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Week 5: Sub-Gaussian Random Variables

where we recall that

oo
F(z):/ t*~le tdt.
0

To show that || X||z» = O(y/p) as p — 00, we first note the following.

Lemma 2.5.1. We have that for p > 1,

r (ﬂ) _ {2p/2\/7_r(p — D!, if pis even;
2 2= (P=D/2(p — I, if p is odd.
Proof. Consider the Legendre duplication formula, i.e.,
T(2)T(z +1/2) = 21722/ (22).
We see that for p being even, (1 + p)/2 =p/2+ 1/2, by letting z := p/2 € N,

27V ) _ p1p (0= 1!

T'(p/2) (p/2—-1)!

1-p ( _1)' __ o9—p/2
_9 \/7?(1/2)17271@_2)” = 27P/2/r(p — 1)L,

For odd p, recall the identity I'(z + 1) = 2I'(z). We then have

I((1+p)/2) =

P((1+9)/2) =207 T~ 1)/2)
V)

== 92 L((p—3)/2)
=2~ P=1/2(p _1)(p—13)...(2)
=2~ (P=1/2(p — )11,
|

We then see that as p — oo,

1/p
1Xllr = V3 (W> < (- )M = 0(/A"?) = O(vB).

I(1/2)
®
Problem (Exercise 2.5.4). Show that the condition E[X] = 0 is necessary for property v to hold.
Answer. Since if E[exp(AX)] < exp(K2A?) for all A € R, we see that from Jensen’s inequality,
exp(EAX]) < Efexp(\X)] < exp(K2)?),
ie.,
AE[X] < K2X2.
Since this holds for every A € R, if A > 0, E[X] < K2); on the other hand, if A < 0, E[X] > KZ\.
In either case, as A — 0 (from both sides, respectively), 0 < E[X] < 0, hence E[X] = 0. ®

Problem (Exercise 2.5.5). (a) Show that if X ~ A(0,1), the function A — E[exp(A\?X?)] is only
finite in some bounded neighborhood of zero.

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 17



Week 5: Sub-Gaussian Random Variables

(b) Suppose that some random variable X satisfies E[exp(A?X?)] < exp(KA?) for all A € R and
some constant K. Show that X is a bounded random variable, i.e., || X ||occ < 00.

Answer. (a) If X ~ AN(0,1), we see that

oo

Elexp(A\?X?)] = /

— 00

exp()\2z2)\/%eﬂ”2/2 dz = \/127_/ exp((A\? — 1/2)z?) dz.

It’s obvious that if A> — 1/2 > 0, the above integral doesn’t converge simply because e<” for
any € > 0 is unbounded. On the other hand, if A> — 1/2 < 0, then this is just a (scaled)
Gaussian integral, which converges. Hence, this function is only finite in A € (—1/v/2,1/v/2).

(b) Simply because that for any ¢, we have that for any A,

Elexp(A\?X?)] < exp(K\?)

<
P(X]>1) < exp(A2t2) T exp(A?t?)

=exp(\*(K —t?)).

Now, let’s pick t > VK (as K being a constant, ¢ can be any constant greater than ¢t > v K),
so AM2(K — t?) < 0. By letting A — oo, we see that P(|X| > t) =0, i.e., P(|X| < t) = 1. Since
we’re in one-dimensional, | X| = || X/, hence we’re done.

®

Problem (Exercise 2.5.7). Check that [-||,, is indeed a norm on the space of sub-gaussian random
variables.

Answer. It’s clear that || X |4, = 0 if and only if X = 0. Also, for any A > 0, [|AX ||y, = Al X |y
is obvious. Hence, we only need to verify triangle inequality, i.e., for any sub-gaussian random
variables X and Y,

X+ Yllge <Xy + 1Y g

Firstly, we observe that since exp(x) and 2% are both convex (hence their composition),

X+Y )2 1X [ 2
exp < exp ((X/[1 X |ly)
(QWMﬁWW% )IWMNWW% ( w))

Y1y,
[ X g+ 1Y e

. exp (/¥ [1,)%).

Then, by taking expectation on both sides,

2
exo{ (e ) )| sl o W,
X T + TV T XTx + 1¥Tz X + 17T,

Now, we see that from the definition of | X + Y|y, and ¢ = || X||y, + [|Y ||, the above implies

E

X+ Yllg, <N Xgy + 1Y ],

hence the triangle inequality is verified. ®

Problem (Exercise 2.5.9). Check that Poisson, exponential, Pareto and Cauchy distributions are not
sub-gaussian.

Answer. Omit. ®

Problem (Exercise 2.5.10). Let X3, X5, ..., be a sequence of sub-gaussian random variables, which

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 18



Week 5: Sub-Gaussian Random Variables

are not necessarily independent. Show that

| X
E —— | <CK,
[mlax v1+loge| —

where K = max; || X;||y,. Deduce that for every N > 2 we have
E {ng\){dXA] < CK+/log N.
1=
Answer. Let Y; .= |X;|/K+/1+ logi (which is always positive) for all ¢ > 1. Then for all ¢ > 0,

| X3 >
PY,>t) =P — 2 >¢
(Yi27) (K I+logi

=P (1X| > ti /T +1logi)

272 :
< 2exp<—6t K*(1+logi)

5 < 2exp(—ct®(1 +logi)) = 2(ei)
1Xill5,

as K == maxi||X,»||12/Jz. Then, our goal now is to show that E[max; ;] < C' for some absolute constant
C'. Consider ty := y/1/¢, then we have

E [maXYi] :/OOIF’(maXYi zt) at
: ; :

to oo 00
< / P (m_aXYZ- > t) dt + / Z P(Y; > t)dt union bound
0 ‘ to =1

0o O
Ly / > 2(ed)™ dt
to =1

< \/1/0—&—2/ ey i at
=1

to

2 [ 2 2 Jr 1+
<1je+2- T —t gt =1+ = . YL T & _. ¢
SVIjet2- ) e AR W /e

Finally, for every N > 2,

| Xil R | Xil
E |m <E|m <E |max —=4 | < CK,
ig%\}r(w/1+logN - iﬁ%\)f(\/lJrlOgi - ?X\/lJrlogi -

ie., Emax;<y | X;|] < CKy/1+1log N < CK+/2log N for all N > 2. By letting C’ := V20,
E {ng\)ﬂXz@ < C'K+/log N,

which is exactly what we want. ®

Problem (Exercise 2.5.11). Show that the bound in Exercise 2.5.10 is sharp. Let X7, Xo,..., Xy be
independent A/(0, 1) random variables. Prove that

E [maxXZ} > cy/log N.

i<N

Answer. Again, let’s first write

E {maxXZ} :/ P (maXXi > t) dt,
i<N o i<N

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 19



Week 6: Hoeffding’s and Khintchine’s Inequalities

and observe that for any ¢t > 0,

P(X; > 1) /OO SN ( $2)d
i >t) = ——exp| —— | dz
t \/27’(’ P 2

1 > (x +1t)?
_\/%/0 exp<— 5 )dx T+t
1 2
o [
m™Jo
2067t2

for some constant C' > 0. Since X;’s are i.i.d.,

P(@}\){(Xizt) —1— (P(X1 <) =1-(1-PX; >8)",

i<

SO

E [maXXi] :/ 1-(1-P(X; > t))th
i<N 0

2/ 1—(1-Ce™)Nat
0

0 N
:vlogN/ 1- (1—NC;2> du. t = /log Nu
0

Finally, as the final integral can be further bounded below by some absolute constant ¢ depending
only on C, hence we obtain the desired result. ®

Week 6: Hoeffding’s and Khintchine’s Inequalities

2.6 General Hoeffding’s and Khintchine’s inequalities 21 Feb. 2024

Problem (Exercise 2.6.4). Deduce Hoeffding’s inequality for bounded random variables (Theorem
2.2.6) from Theorem 2.6.3, possibly with some absolute constant instead of 2 in the exponent.

Answer. Omit. ®
Problem (Exercise 2.6.5). Let X7,..., Xy be independent sub-gaussian random variables with zero
means and unit variances, and let a = (a1, ...,ay) € RY. Prove that for every p € [2,00) we have

v 1/2 a7 v 1/2
(Z a?) < ZaiXi < CK.\/p <Z a?)
i=1 i=1 i=1

where K = max;|| X;|l4, and C is an absolute constant.

Lp

Answer. From Jensen’s inequality,
1/2

>

N N 2
=1 i=1

N
E a; X;
i=1

Then, observe that since E[X;] = 0,

N N e
i=1 i=1

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 20
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Week 6: Hoeffding’s and Khintchine’s Inequalities

and at the same time, as Var[X;] = 1, Var [Zfil aiXi] = Zfil a? Var[X;] = SN a2 = ||a)?,

i=1 4
hence we have

> [lla?)"* = |lall,

N
E a; X;
i=1

which is the desired lower-bound. For the upper-bound, we see that

N N
E a; X; E a; X;
i=1 i=1

Ly

2
§02\/ﬁ2

2
L, P2

N N
<Op) llaiXill3, = C"p)_ at I Xill}» < C"K?pllall?,

i=1 i=1

where C,C’",C" are all absolute constant (might depend on each other). Taking square root on
both sides, we obtain the desired result. ®
Problem (Exercise 2.6.6). Show that in the setting of Exercise 2.6.5, we have

v 1/2 o . 1/2
c(K) (Z a?) < Z%‘Xz‘ < (Z a?) .
i=1 i=1 i=1

Here Kgmax;|X;||y, and ¢(K) > 0 is a quantity which may depend only on K.

Ll

Answer. Skip, as this is a special case of Exercise 2.6.7. ®

Problem (Exercise 2.6.7). State and prove a version of Khintchine’s inequality for p € (0, 2).

Answer. The Khintchine’s inequality for p € (0,2) can be stated as

N 1/2 N N 1/2
(K, p) <Z a?) < ZaiXZ- < (Z a?) .
i=1 i=1 i=1

Here K = max;||X;||y, and ¢(K,p) > 0 is a quantity which depends on K and p. We first recall the
generalized Holder inequality.

Lp

Theorem 2.6.1 (Generalized Holder inequality). For 1/p + 1/q = 1/r where p, ¢ € (0, ],

gl < W fllzellgllze-

Proof. The classical case is when r = 1. By considering | f|” € L?/" and |g|" € LY/, r/p+r/q =
1. Then the standard Hoélder inequality implies

9l =/|fg\’" = fgl" Lz < WMA" Nzor- Mgl ase

= (fasre) ™ (o)™ = toti

implying the result. |

Now, take r = 2, p = q¢ = 4, we get

XY |2 < |1 X||pallYllze = EIX1) Y Y1)
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Week 7: Sub-Exponential Random Variables

Let X = |Z|P/* and Y = | Z|(*~P)/4 we see that

_p\1/4 _
1Z]122 < @[ZPDY* €212 = 12121 2155,

L4-p
4/p 4
Ly = (4-p)/4 =y
121} izl

LA-p LA-p

implying

Finally, by letting Z = >N | a;X;,

4/p

N (4=p)/p

Zal Zaz

o/

Li-p

Observe that from Exercise 2.6.5:
N
o 2055 aiXillz2 = llall;

o IXL, aiXilpai-r < CKA=plla (as 4 — p > 2 from p € (0,2)),

hence

Lp

éain EGHM)/(CK\/*HM) PP = (CK\/i) Ha||
)~

Hence, we see that by letting ¢(K, p) == (CK+/4 — p)~?/(4=P) the lower-bound is established. The
upper-bound is essentially the same as Exercise 2.6.5 (in there we use have the lower-bound since
p > 2), where this time we use ||-[|z» < ||-||2 since p < 2. Hence, we’re done. ®

“Note that although ||-||L» for p € [0,1) is not a norm, this inequality still holds.

Remark. Fxercise 2.6.6 is just a special case with ¢(K,1) = (CK+/3)~1/3,

Problem (Exercise 2.6.9). Show that unlike (2.19), the centering inequality in Lemma 2.6.8 does not
hold with C = 1.

Answer. Consider the random variable X := 4/log?2 - ¢ where € is a Rademacher random variable

with parameter p, i.e.,
log 2, w.p. p;
v { g P

log2, w.p.1—p

Since Elexp(X?)] = 2, we know that || X||y, is exactly 1. We now want to show that || X —E[X]|,, >
| Xy, =1 for some p. It amounts to show that E[exp(|X —E[X]|?)] > 2. Now, we know that
E[X] = VIog2(2p — 1), and hence

2(1 —p)\/log2, w.p.p;

X -E[X]=
{—2p\/10g2, w.p.1—p

Hence, we have that
2 2
Elexp(|X — E[X]]?)] = p-2*17P) 4 (1 —p)2*7".

A quick numerical optimization gives the desired result with p ~ 0.236. ®

Week 7: Sub-Exponential Random Variables

2.7 Sub-exponential distributions 1 Mar. 2024
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Week 7: Sub-Exponential Random Variables

Problem (Exercise 2.7.2). Prove the equivalence of properties a-d in Proposition 2.7.1 by modifying
the proof of Proposition 2.5.2.

Answer. This is a special case of Exercise 2.7.3 with oo = 1. ®
Problem (Exercise 2.7.3). More generally, consider the class of distributions whose tail decay is of

the type exp(—ct®) or faster. Here o = 2 corresponds to sub-gaussian distributions, and « = 1, to
sub-exponential. State and prove a version of Proposition 2.7.1 for such distributions.

Answer. The generalized version of Proposition 2.7.1 is known to be the so-called Sub- Weibull
distributions [V1a+20]: Let X be a random variable. Then the following properties are equivalent;
the parameters K; > 0 appearing in these properties differ from each other by at most an absolute
constant factor.

(a) The tails of X satisfy

P(|X]| > t) < 2exp(—t*/K;) for all t > 0.

(b) The moments of X satisfy

1 X |ze = (B[ X[P])Y/P < Kop'/® for all p > 1.

(¢) The MGF of |X| satisfies

1
Elexp(A*| X)) < exp(A®KY') for all A such that 0 < A < 7
3
d) The MGF of |X| is bounded at some point, namel
( point, y
Elexp(]X|*/K{)] < 2.
Claim. (a) = (b)
Proof. Without loss of generality, let Ky = 1. Then, we have
X1, = [ POxP > 6 ar
0
_ / puP=P(X] > u) du p—
0
< 2p/ uP e du from our assumption
0
-z /OO /e le=t dt ti=u®
@ Jo
= 22T (p/a) = 20(p/a +1) § (p/a+ 1)P/*!
«@
for some constant C' from Stirling’s approximation. Hence,
P 1,1 P 10 1
1l S (B2 41)7F = (2+1)" (B41)" 5pte
Q Q «@
as we desired. ®
Claim. (b) = (c)

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES
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Week 7: Sub-Exponential Random Variables

Proof. Firstly, from Taylor’s expansion, we have

— o AFE[| X]¥] o A“FE[|X|*¥]
E[exp(A%| X |)] :1+ZT < HZT‘
k=1 k=1
From (b), when ak > 1, we have E[|X|**] < (Kg(ak;)l/a)o‘k = K& (ak)*. On the other hand,
for any given a > 0, there are only finitely many k£ > 1 such that ak < 1. Hence, there exists

some K5 such that B
E[|X|**] < K§*(ak)*

for all k > 1. With k! > (k/e)* from Stirling’s approximation, we further have

o ARE[| X |2k 2. Ak ek (k) k -
1 . —— <o S 4 1 Y K K A&
ST <1 S R =142 (Kfxtad

Observe that if 0 < I~(2°‘)\"oze < 1, we then have
E[exp(A*| X %) i KX ae)* -
P 2 1- IN{g‘)\O‘ae.
As (1 —z)e?® > 1 for all z € [0,1/2], the above is further less than

exp (Q(I?QA)QOJB) = exp( [(2046)1/0‘1?2} : A").

By letting K3 = (2ae)1/0‘[~(2, we have the desired result whenever 1?20‘)\0‘046 < 1, or equiva-
lently,

1
S0<A< =

0< A< _—.
K$ae K (ae)l/«

Hence, if 0 < A < W = & the above is satisfied. ®

Claim. (¢) = (d)

Proof. Assuming (c) holds, then (d) is obtained by taking A := 1/K, where K, := K3(In2)~1/.
In this case, A = 1/K3 - (In2)*/®, hence

Elexp(A*|X[")] = E[exp(|X|*/K{)] < exp(A*K)

forall 0 < A =1/K4 < 1/Kj3 from (d) gives

1
Elexp(|X|*/K{)] < exp(an Ko K3> =%
3

®
Claim. (d) = (a)
Proof. Let K4 = 1 without loss of generality. Then, we have

E X
B(IX| > £) = Blexp(|X|") > exp(t)) < BRI < g ooy,
exp(t®)
hence K := 1 proves the result. ®
®
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Problem (Exercise 2.7.4). Argue that the bound in property ¢ can not be extended for all A such

Answer. It’s easy to see that in the proof of Exercise 2.7.3, when we prove (b) = (c), the condition
for A essentially comes from:

o whether 1+ 7%, (KgA%ae)k =14 332 (Kahe)* as v = 1 converges; and
e the numerical inequality (1 — z)e2* > 1 for z € [0,1/2] such that z := Kj\e.

For the first condition, we only need |I~(2)\e| < 1, hence we don’t need positivity for A at first;
however, the second condition indeed requires A > 0, and it’s impossible to remove as this is tight.

FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

& WolframAlpha

(1-x)eM2x} x in (-1/2, 1/2) e

¥ NATURAL LANGUAGE | [f5 MATH INPUT @ EXTENDED KEYBOARD :ii EXAMPLES # UPLOAD 24 RANDOM

Input interpretation

plot (1 - x)e2¥ -

Plot

04 0.2

®

Problem (Exercise 2.7.10). Prove an analog of the Centering Lemma 2.6.8 for sub-exponential ran-

dom variables X:
X —E[X]llg, < Cll X,

Answer. Since |||y, is a norm, we have | X —E[X]||y, < || X4, + |E[X]|ly, such that

IE[XTlly, S ELX]] lally, = infeso{Elel*/*] < 2} < |al
< E[X]] Jensen’s inequality
= [ XNz S 11Xy,

from Proposition 2.7.1 (b) with p =1, i.e.,
[ Xz < Kz = [| Xy,

since K; 2 || X ||y, = K4. ®
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Week 8: Bernstein’s Inequality

Problem (Exercise 2.7.11). Show that || X||, is indeed a norm on the space L. 6 Mar. 2024

Answer. Clearly, || X||, > 0. To check || X || = 0if and only if X = 0 a.s., we first see that ||0]|, =0
as ¥(0) = 0. On the other hand, if || X||, = 0, then by the monotone convergence theorem, we have

1> ImEf(1X]/9)] = E [lim (1x]/1)]
:/0 P(}%¢(|X|/t) >u> du
= P(|X]| > 0) /OOOP (}Lnéz/;qxw) >ul|X] > o) du
=P(|X| >0)/Oo du
oo B(X| > 0)
since if | X| =0, ¥(|X|/t) = ¥(0) = 0 for all ¢ > 0, and
P (}%w(\xvt) >ullX|> 0) —1
since ¢ (x) — oo for & — oo, and in this case, = | X|/¢, which indeed goes to oo as t — 0. Overall,

this implies P(|X| > 0) = 0, i.e., X = 0 almost surely, hence we conclude that || X||, = 0 if and
only if X = 0 a.s. The other two properties follows the same proof of Exercise 2.5.7. ®

2.8 Bernstein’s inequality

Problem (Exercise 2.8.5). Let X be a mean-zero random variable such that |X| < K. Prove the
following bound on the MGF of X:
Elexp(AX)] < exp(g(A\)E[X?]) where g(\) = &
- 1—|MK/3’
provided that |A| < 3/K.
Answer. From the hint, we first check the following.
Claim. For all |z| < 3,
z2/2
T<1 —
AR S
Proof. From Taylor’s expansion,
a: o0 oRCo I 22 /2
T _ il <1 1 2
¢ 2]; 2+k:'/2_ Trty ;}gk TP T a3
where the last equality follows for all |z| < 3. ®
Now, for a random variable X such that |X| < K and |\ < 3/K, we have
A2X2/2 NE[X?]/2 NE[X?]/2
E M <S<E[14+X X+ —F— | =1+ —"—"-< 2= 72
w0} <E 100+ 2] =14 SR <en(T )
where we let x = AX and apply the claim. Finally, note that the right-hand side is exactly
exp(g(A)E[X?]), we're done. ®
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Problem (Exercise 2.8.6). Deduce Theorem 2.8.4 from the bound in Exercise 2.8.5.

Answer. From Markov’s inequality, for every t > 0,

N E |exp )\ZZ]\L X
12 (; Xi 2 t) < /{I;fo [ Sxp()\t)1 )}

N N
= inf e H]E[exp(/\Xi)] < ,{I;% e Mexp (g(/\) Z]E[Xf])

A>0 -
=1

from Exercise 2.8.5, if |A| < 3/K. Denote o2 = Zf\il E[X?], we further have

N
P (Z X; > t) < )1\1;1:) exp(—)\t —|—g(>\)02).

i=1

Let 0 < A\ = < 3/K, we see that

t
o2+tK/3

N 2 242 2
t 0°A% /2 /2
P X;>t] < - - R .
(Z = ) —eXp< 2 iK/3 T 1—|)\|K/3> eXp( 02+tK/3>

i=1

Applying the same argument for —X;, we get

P( 2t> g2exp(02f/;t/3>.

N

> x,

i=1
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Chapter 3

Random vectors in high dimensions

Week 9: Concentration Inequalities of Random Vectors

3.1 Concentration of the norm

Problem (Exercise 3.1.4). (a) Deduce from Theorem 3.1.1 that
v — CK? <E[|X]s] < v+ CK?.
(b) Can CK? be replaced by o(1), a quantity that vanishes as n — co?
Answer. (a) From Jensen’s inequality, we have
E[IX 2 = vall <E[llIX]l2 = vall < [ Xl2 = vally, < CK?
from Theorem 3.1.1 and
12l = inf{t > 0: Efexp(22/82)] <2} > | |1
as Elexp(Z2/(E[|Z]]?))] > 1+ E[Z?]/(E[|Z|]?) > 2, again from Jensen’s inequality.

(b) We first observe that E[||X||2] < v/E[||X||3] = v/n, hence we only need to deal with lower-
bound. Consider the following non—negatlve function

f@)=vE- 51 +z—(=-1)%) >0

for > 0. Then, for z = || X||3/n > 0, we have

X2 X|12 2
Sixta> Y (14 KB (X )
2 n n

SE[IX]e] > Y2 (14 2) - Y2g [(uxu L mxnaﬂ

1
SE[IX3] 2 V7 - 5z Var[| X ]

Expanding the variance, we see that

n

Var[|| X ||2] ZVar (X2] =) (E[X}] - E[X})?) < n- max E[X}] _n~lrgia<xn|\XiH‘z4,

1<i<n
=1
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Week 9: Concentration Inequalities of Random Vectors

and from the sub-gaussian property, this is < n - maxi<i<n || Xi|[j, = nK*. Overall,

1 K*
> —_— —— 4 = —_—— =
E[HX”Q} = \/ﬁ 2n3/2nK \/ﬁ \/ﬁ \/ﬁ‘f— 0(1)7

if K > 1. Otherwise, when K < 1, we replace K% by 1, the result holds still.

®
Problem (Exercise 3.1.5). Deduce from Theorem 3.1.1 that
Var[|| X ||2] < CK*.
Answer. From the definition and the fact that the mean minimizes the MSE,
Var([|.X[l2] = E[(IX[l2 — E[IX[l2])*] < E[(1X]l2 — v/n)?],
then from the proof of Exercise 3.1.4, as E[||| X||2 — v/n|] < cK? for some c,
Var[|[ X [l2] < E[(IX[l2 = vn)’] < *K*,
and by letting ¢ =: C, we’re done.
®

Problem (Exercise 3.1.6). Let X = (X3,...,X,) € R" be a random vector with independent coor-
dinates X; that satisfy E[X?] = 1 and E[X}] < K*. Show that

Var[|| X ||2] < CK*.

Answer. Firstly, observe that with our new assumption, Exercise 3.1.4 (b) again gives E[||X||2] 2
vn — K*/y/n. Then from the same reason as stated in Exercise 3.1.5,

Var[| X[l2] < E[([IX[l2 — vn)*] = 2n — 2V/nE[||X|2] S 2n - 2V/n (\/ﬁ - fjﬁ) =2K",

proving the result. ®

Problem (Exercise 3.1.7). Let X = (X1,...,X,) € R” be a random vector with independent coor-
dinates X; with continuous distributions. Assume that the densities of X; are uniformly bounded
by 1. Show that, for any € > 0, we have

P(|X ]2 < ev/n) < (Ce)™.

Answer. We want to bound
P (| X2 < ev/n) =P(| X||3 < ?n) =P (Z X2 < 62n> .
i=1

Follow the same argument as Exercise 2.2.10,“ i.e., first we bound E[exp(—tXiz)] for all t > 0. We

have
1/«

E[exp(—tX7)] :/0 e_m2fxi($)d$§/0 e~ dy = sV T

from the Gaussian integral. Then, from the MGF trick, we have

]E[exp(- tHf(H%)] 1 [m\" e
p X < [D_X2>_2 < i < i ten.
(1Xll2 < evn) =B-IIXIl, 2 —¢'n) < 1f —C Dy <m5{3y'z)
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Let t = €2, we have

(1l < v < (Leve) = (ca"

by letting C = \/me/2. ®

%The result does not directly follow from this because € is replaced by €2, and a bound on the density of X; doesn’t
give a bound on the density of X 3

3.2 Covariance matrices and principal component analysis

Problem (Exercise 3.2.2). (a) Let Z be a mean zero, isotropic random vector in R™. Let p € R"
be a fixed vector and ¥ be a fixed n X n symmetric positive semidefinite matrix. Check that
the random vector

X =p+3?7

has mean x and covariance matrix Cov[X] = 3.

(b) Let X be a random vector with mean p and invertible covariance matrix ¥ = Cov[X]. Check
that the random vector
Z ="YX —p)

is an isotropic, mean zero random vector.

Answer. (a) Firstly,
E[X] =E[u] + E[ZY22] = u+ SV2E[Z] = 1

Moreover,

Cov[X] = Cov[u + £/2Z]
=E[(u+3Z22)(u+222) 1] — pp’
— E[(u+34/22)27 (22)7)
_ E[MZT<21/2)T] FE[SY22ZT(5Y2)T]
=04+ XV2E[Z2Z27 (/)T
_ 21/2In(21/2)T
=3
as X is positive-semidefinite.

(b) Similarly,
E[Z] =% V2E[X —p] =572 (u—p) =0,

and moreover,
Cov[Z] = Cov[EY2(X — p)]
—E |[(Z7V2(X - )(=7V2(X — )]
~ EEX - p)(X — ) T)(E )T

— 2—1/22(2—1/2)T
= Inu

hence Z is also isotropic.

®

Problem (Exercise 3.2.6). Let X and Y be independent, mean zero, isotropic random vectors in R™.
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Check that
E[|X - Y]|3] = 2n.

Answer. This directly follows from

E[|IX - Y[}3] = E[(X - Y, X - V)] = E[(X, X)] - 2E[(X,Y)] + E[(Y,;Y)] =n — 0 +n = 2n.

Week 10: Common High-Dimensional Distributions
3.3 Examples of high-dimensional distributions

Problem (Exercise 3.3.1). Show that the spherically distributed random vector X is isotropic. Argue
that the coordinates of X are not independent.

Answer. Firstly, from the spherical symmetry of X, for any z € R", (X, z) 2 (X, ||]|2€) for all
e € S 1. Hence, to show X is isotropic, from Lemma 3.2.3, it suffices to show that for any « € R”,

1 n
13| - g
n -
i=1

where e; denotes the i*" standard unit vector. The last equality holds from the fact that

1 1 1

E|=-Y X2 =-E[X|3]=-n=1
[n > ] “E[IX]3] = —n

as X ~ U(y/nS™1). On the other hand, clearly X;’s can’t be independent since the first n — 1
coordinates determines the last coordinate. ®

n

Z(lellinV] = ||l=[I3E

i=1

EL(X,2)%) = Y E[(X, lollzes’) = 1B

Problem (Exercise 3.3.3). Deduce the following properties from the rotation invariance of the normal
distribution.

(a) Consider a random vector g ~ N(0,I,,) and a fixed vector u € R™. Then

(g, u) ~ N0, [[ull3)-

(b) Consider independent random variables X; ~ N(0,02). Then
ZXi ~ N(0,0%) where 0° = Zaf.
i=1 =1

(c) Let G be an m x n Gaussian random matrix, i.e., the entries of G are independent N(0,1)
random variables. Let v € R™ be a fixed unit vector. Then

Gu ~ N(0,I,,).
Answer. (a) Without loss of generality, we may assume |lu|lz = 1 and prove
(g,u) ~N(0,1)

for any fixed unit vector u € R™. But this is clear as there must exist uq,...,u,—1 such
that {w,ui,...,u,_1} forms an orthonormal basis of R", and U = (u,uy,...,up_1)' is
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Week 10: Common High-Dimensional Distributions

orthonormal. From Proposition 3.3.2, we have
Ug ~ N(Oa In)a
which implies (Ug); ~ N(0,1). With (Ug); = u'g = (g,u), we're done.
(b) For independent X; ~ N (0,02), we have X;/o; ~ N(0,1). We want to show
n
Z Xl (R N(O, 0'2)
i=1

where 02 = " 02, Firstly, we have g := (X /01,...,X,/0,) ~ N(0,1,), then by consid-

1
ering u := (01, ...,0,) € R, we have

(g,u) =D Xi ~ N(O, [[ull) =N <O7ZU?> =N(0,0%)
i=1 i=1
from (a).

(¢) For any fixed unit vector u, (Gu); = Z?Zl gijuj = {(g;,uw) where g; = (gi1, gi2, - - - , gin) for all
i € [m]. It’s clear that g; ~ N (0, I,,), and from (a), (g;,u) ~ N(0,1). This implies

Gu = ({g1,u), -, (gm,u)) ~ N(0,I,,)
as desired.

®

Problem (Exercise 3.3.4). Let X be a random vector in R™. Show that X has a multivariate normal
distribution if and only if every one-dimensional marginal (X, ), § € R™, has a (univariate) normal
distribution.

Answer. This is an application of Cramér-Wold device and Exercise 3.3.3 (a). Omit the details. ®

Problem (Exercise 3.3.5). Let X ~ N(0, ).

(a) Show that, for any fixed vectors u,v € R™, we have

E[(X, u){X, )] = (u,).

(b) Given a vector u € R”, consider the random variable X,, = (X, u). From Exercise 3.3.3 we
know that X, ~ N (0, ||u||3). Check that

[ Xu = Xollzz = [lu— vl
for any fixed vectors u,v € R™.
Answer. (a) It’s because
E[(X,u)(X,v)] =E[(u' X)(X )] =u E[XX v =u' Lo = (u,v)
from the fact that X is isotropic.

(b) Since X, — X, = (X, u) — (X,v) = (X,u—v) = X,,_, from linearity of inner product. Hence,

HXu - )(vHL2 =V <Xu—uaXu—v> =\ E[Xg—u] = EKX,U - ’U>2].
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From (a), E[{(X,u — v)?] = (u — v,u — v) = |Ju — v||3, hence
1Xu = Xollz2 = y/llu = 0lf = [l = v]2.

®

Problem (Exercise 3.3.6). h Let G be an m x n Gaussian random matrix, i.e., the entries of G are
independent N(0,1) random variables. Let u,v € R™ be unit orthogonal vectors. Prove that Gu
and Guv are independent N (0, I,,,) random vectors.

Answer. It’s clear that Gu and Gv are both N(0, I,,,) random vectors from Exercise 3.3.3 (c). It
remains to show that Gu and Gv are independent, i.e., (Gu); and (Gv); are independent random
variables.

For i # j, this is clear since (Gu); = ¢ (Gu) and (Gv); = e;r(Gv), and e, G gives the i row of
G, while e;'—G gives the j™ row of G. The fact that G has independent rows proves the result for
the case of i # j.

Fori=j,lete] G = g where g ~ N(0,1,), and we want to show independence of (Gu); = g u
and (Gv); = g'v. This is still easy since

gTu T T
(gTU) = (u,v) g ~N(0, (u,v) "' I,(u,v)) = N(0,I)

as u, v are unit orthogonal vectors. ®

Problem (Exercise 3.3.7). Let us represent g ~ AN (0,1,,) in polar form as
g=r6
where 7 = ||g|2 is the length and 6 = g/||g||2 is the direction of g. Prove the following:

(a) The length r and direction 6 are independent random variables.

(b) The direction  is uniformly distributed on the unit sphere S™~1.

Answer. For any measurable M C R", given the normal density fo(g) of g, some elementary
calculus gives the polar coordinate transformation dg = r"~! dr do(6), hence

P(g € M) = /M folg)dg = /A /B fo(r6) do(8)r™ 1 dr

Wn—1

3.1
= 7/ prle=r’/2 dr/ do(0) =P(r € A,0 € B) &y
(2m)n/2 Ja B ’

for some A C [0,00) and B C S™~! generating M, where o is the surface area element on S™~!
such that fs"—l do = wy_1, i.e., wp_1 is the surface area of the unit sphere S 1.

(a) From Equation 3.1, it’s possible to write
Plge M)=P(rec A,0 € B) = f(A)g(B)
such that g(S™"~!) = 1 with appropriate constant manipulation. Hence, with B = S"~1,
P(re A,0 € S" Y =P(r € A) = f(A),
implying f([0,00)) = 1 as well. This further shows that by considering A = [0, c0),
P(r € [0,00),0 € B) =P(0 € B) = g(B).

Such a separation of probability proves the independence.
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(b) From Equation 3.1, we see that for any B C S™~!, the density is uniform among do(6), hence
6 is uniformly distributed on S™~!.

Problem (Exercise 3.3.9). Show that {u;}, is a tight frame in R™ with bound A if and only if

N
E uzu;r = Al,.
i=1

Answer. Recall that for two symmetric matrices A, B € R"*", A = B if and only if " Az = 2 " Bx
for all z € R™. Hence,

N N
Zulu;r =Al, &z’ <Z um?) r=2z' (Al,)x
i=1 i=1

for all x € R™. We see that

e The left-hand side:

N N

N
zT (Z uzu;r> T = Z(x—rul)(uj ) = Z(Ui,$>27
=1

i=1 =

e The right-hand side:
' ALz = Az "z = A|jz|2.

Hence, Zl]\il u;u; = AI, if and only if Zf:1<ui,x>2 = Al|z||%, ie., {u;}}Y, being a tight frame. ®

Week 11: High-Dimensional Sub-Gaussian Distributions

3.4 Sub-gaussian distributions in higher dimensions 29 Mar. 2024

Problem (Exercise 3.4.3). This exercise clarifies the role of independence of coordinates in Lemma
3.4.2.

1. Let X = (X3,...,X,) € R" be a random vector with sub-gaussian coordinates X;. Show that
X is a sub-gaussian random vector.

2. Nevertheless, find an example of a random vector X with

[ X ||y > max|| X;l|y,-
i<n
Answer. 1. We see that

n
XNy = sup (X, 2)llyp < sup D ll2iXilly, < sup [ Xilly, < co.
Seaal zesSn-1 4 zesSn—1

€

2. Just consider X; = Z are the same where Z ~ N(0,1). Then, we see that

max|| Xilly, = [[Zlly. = v8/3
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as Elexp(Z?/t*)] = 1/4/1 — 2/t2. On the other hand,
XN > (X, Ln/V)|,,, = VRZ]ly, = /81/3.

Problem (Exercise 3.4.4). Show that

n
X = .
1X 0o < 1o

Answer. Since we not only want an upper-bound, but a tight, non-asymptotic behavior, we need to
calculate || X[, as precise as possible. We note that

IXllpa = sup I(X.0)llyy = sup inf{t > 0: Elexp((X,)%/12)] <2},
o= reESTT

z€
and clearly the supremum is attained when x = e; for some 7. In this case,
[ Xy, = inf{t > 0: E[exp(X7/t?)] < 2}.
Note that since X ~ U({\/ne;};), we see if we focus on a particular coordinate i,
n—1

0, w.p. ;

o n
X; 1

Hence, for any t > 0,

n—1 1 n
Elexp(X7/t?*)] = —t gexp(t—2>.

Equating the above to be exactly 2 and solve it w.r.t. ¢, we have

n—1+ e/t , . .
n n +e n < In(n + 1) 2 n(n+1)’
meaning that
| X ||, = inf{t > 0: E[exp(XZ/t2)] <2} = n _ n_
2 ' a In(n + 1) logn

®

Problem (Exercise 3.4.5). Let X be an isotropic random vector supported in a finite set T C R™.
Show that in order for x to be sub-gaussian with || Xy, = O(1), the cardinality of the set must be
exponentially large in n:

|T| > e“™.

Answer. This is a hard one. See here for details. ®

Problem (Exercise 3.4.7). Extend Theorem 3.4.6 for the uniform distribution on the Euclidean ball
B(0,+/n) in R™ centered at the origin and with radius y/n. Namely, show that a random vector

X ~U(B(0,vn))

is sub-gaussian, and
[ X1y, < C.
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Answer. For X ~ U(B(0,+/n)), consider R := || X||2/v/nandY = X/R = \/nX/||X||2 ~U(y/nS"1).
From Theorem 3.4.6, ||Y]|y, < C. It’s clear that R < 1, hence for any z € S"~!,

Elexp((X, z)?/t*)] = Elexp(R*(Y,z)*/t*)] < E[exp((Y, z)*/t?)],

which implics [[{X, )|y, < | (Y: @)y, Hence, | Xy, < [¥]lu, < C. ®

Problem (Exercise 3.4.9). Consider a ball of the ¢; norm in R™:
K={zeR": |z|, <r}.
(a) Show that the uniform distribution on K is isotopic for some r =< n.

(b) Show that the subgaussian norm of this distribution is not bounded by an absolute constant
as the dimension n grows.

Answer. (a) Observe that for i # j, (X;, X;) 2 (X;,—Xj), hence E[X;] = 0 and E[X;X,] = 0 for
i # j. Hence, for X to be isotropic, we need E[X?] = 1. Now, we note that P(|X;| > z) =
(r—x)"/r" = (1 —a/r)" for x € [0,r], hence

[e’s) T n 1
E[Xg]:/ 2xP(|Xi\>m)dx:2r2/ 2(1-3) dﬁ:m«?/ H1— )" dt,
0 0 0

r r r

which with some calculation is 2r?/(n? 4+ 3n + 2). Equating this with 1 gives r < n.

(b) It suffices to show that || X;||z» > C'\/p, which in turns blow up the sub-Gaussian property in
terms of LP norm. We see that

1|2, = / pePP(|X;| > z) de

AV z\" dz !
:prp/ — 1--— —:prp/ P11 —t)"dt = pr? - B(p,n + 1),
LG5 T e (

r r
where B is the Beta function. From the Beta function,

T(p)T'(n+1)

Xippzrp' P
Il = pro - TN L

hence || X;||z» > C'/p is evident from the Stirling’s formula.

®

Problem (Exercise 3.4.10). Show that the concentration inequality in Theorem 3.1.1 may not hold
for a general isotropic sub-gaussian random vector X. Thus, independence of the coordinates of X
is an essential requirement in that result.

Answer. We want to show that ||| X [|2 — /7|y, < Cmax||X;]|7, does not hold for a general isotropic
sub-Gaussian random vector X with E[X?] = 1. Let 0 < a < 1 < b such that a® + b* = 2, and
define

X = (aZ)*(bZ)' ¢,

where € ~ Bern(1/2) and Z ~ N(0,1,,). In human language, consider X has a distribution

1 1
Fyxy = — —Fyz.
X gtz + 5 tvz
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With this construction, X is isotropic since

EXXT] = %E[(aZ)(aZ)T] L %E[(bZ)(bZ)T]

L, Ti. Lo i a® | b
-a’E|ZZ SVEZZ | =5+ 5 | In=1y,
S@E[ZZ7]+ 5VEZZ7) = (5 +5 ) I =L

and E[X?] = 1 with a similar calculation. Moreover, for any vector z € S™~1,

1 1

Blexp((X,2)"/%)] = N AN ey

when ¢ is large enough (compared to a,b). This shows ||(X, z)|ly, < t, and since a, b is taken to be
constants, X is indeed a sub-Gaussian random vector.

Now, we show that the norm of X actually deviates away from /n at a non-vanishing rate of
n. In particular, conciser ¢ = (b — 1)y/n/2, then

2E [exp(|| X |l2 — vn)*/t2] > Elexp((|[bZ]l2 — vn)?/t?)]
> Elexp(([6Z]l2 — vn)? /1) 1) z)25n]

> exp((bv/n — v/n)?/t*)P(|| Z]|3 > n) since b > 1
= e"P(|Z]3 > n)
—et/2>4

since P(||Z]|3 > n) = P(X1~, Z? > n), and with E[Z?] = Var[Z;] = 1, and Var[Z?] = E[Z}] —
E[Z]?=3—1=2< oo,

R - (B ) B

by the central limit theorem, hence, the asymptotic distribution of " ; ZZ —n is symmetric around
0, meaning that P(}_;_, Z? > n) = P(}.]_; Z? — n > 0) = 1/2. This implies that for all large
enough n,

A

n
X2 = VAl > t = (b - )5 = oo.

Week 12: High-Dimensional Sub-Gaussian Distributions

3.5 Application: Grothendieck’s inequality and semidefinite pro-
gramming

Problem (Exercise 3.5.2). 1. Check that the assumption of Grothendieck’s inequality can be
equivalently stated as follows:

> aijmiys| < max|:| - maxly,|
%]

for any real numbers z; and y;.

2. Show that the conclusion of Grothendieck’s inequality can be equivalently stated as follows:

D agjfue,vy)| < K madu] - mau|
1,7
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Week 12: High-Dimensional Sub-Gaussian Distributions

for any Hilbert space H and any vectors u;,v; € H.

Answer. Omit. ®

Problem (Exercise 3.5.3). Deduce the following version of Grothendieck’s inequality for symmetric
n X n matrices A = (a;;) with real entries. Suppose that A is either positive semidefinie or has zero
diagonal. Assume that, for any numbers z; € {—1, 1}, we have

E Q5T 5 Sl
.3

Then, for any Hilbert space H and any vectors u;,v; € H satisfying |lu;|| = |lvj|| = 1, we have
> aij(ui, ;)| < 2K,
,J

where K is the absolute constant from Grothendieck’s inequality.

Answer. Omit. ®

Problem (Exercise 3.5.5). Show that the optimization (3.21) is equivalent to the following semidef-
inite program:
max(A, X): X =0, X;=1fori=1,... n.

Answer. Omit. ®

Problem (Exercise 3.5.7). Let A be an m x n matrix. Consider the optimization problem

max Y Ai(Xi,Y;): | Xilla = ||V l2 = 1 for all 4,
0]

over X;,Y; € R¥ and k € N. Formulate this problem as a semidefinite program.

Answer. Omit. ®

3.6 Application: Maximum cut for graphs

Problem (Exercise 3.6.4). For any € > 0, given an (0.5 — €)-approximation algorithm for maximum
cut, which is always guaranteed to give a suitable cut, but may have a random running time. Give
a bound on the expected running time.

Answer. Omit. ®

Problem (Exercise 3.6.7). Prove Grothendieck’s identity.

Answer. Omit. ®

3.7 Kernel trick, and tightening of Grothendieck’s inequality

Problem (Exercise 3.7.4). Show that for any vectors u,v € R™ and k € N, we have

(u®* v®F) = (u, v)".
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Week 12: High-Dimensional Sub-Gaussian Distributions

Answer. This is immediate from the definition, i.e.,

k
n
(u®k, v®*) = Z Wiy oip Vi iy = Z Uiy oo o Wiy Uy e Vg = (Z uivi>
T1,050k T150050k i=1
by observation (and probably term-matching). ®
Problem (Exercise 3.7.5). (a) Show that there exist a Hilbert space H and a transformation

®: R™ — H such that

(®(u), ®(v)) = 2(u,v)? + 5(u,v)* for all u,v € R".

(b) More generally, consider a polynomial f: R — R with non-negative coefficients, and construct
H and & such that
(P(u), ®(v)) = f((u,v)) for all u,v € R™.

(¢) Show the same for any real analytic function f: R — R with non-negative coeflicients, i.e.,
for any function that can be represented as a convergent series

flx)= iakxk, ASBIN (3.2)
k=0

and such that a; > 0 for all k.

Answer. (a) Consider H = R"*" @ R™"*"*". Then, consider ®(z) := (v22%2%,1/52%3), and we
have
(V2u®2, V5u®%), (V2v®2, V50®%))

(
2<u®2,v®2> + 5<u®3,v®3) = 2<u,v>2 + 5<u,v>3,

(B (u), ®(v))

where the last equality follows from Exercise 3.7.4.

(b) Consider an m-order polynomial of (u,v), which we write f({u,v)) = > "), ax(u,v)*. Then,
by noting that a; > 0, we may define

m

m
H = @R"k, and ®(x) == @ Varpz®® = (Vag, arz, /azx®?, . . . /amz®™).

k=0 k=0
Then by a similar calculation as (a), we have (®(u), ®(v)) = f({u,v)) for all u,v € R™.

(¢) In this case, we just let m = oo in (b), i.e., consider

H:= @R”k, and ®(x) := @ Varz®,
k=0 k=0

where the limit is allowed as f converges everywhere. Note that a; > 0, hence /aj is also
well-defined.

®

Problem (Exercise 3.7.6). Let f: R — R be any real analytic function (with possibly negative coeffi-
cients in Equation 3.2). Show that there exist a Hilbert space H and transformation ®, ¥: R” — H
such that

(®(u),¥(v)) = f({u,v)) for all u,v € R™.
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Moreover, check that
o0

12(w)]|* = 12 ()* = Y _laxull3*.

k=0
Answer. Again, similar to Exercise 3.7.5 (¢), we construct
o0 B o0 oo
H = @R" , and ®(z) = @\/akx(@k, and ¥(x) = @sgn(ak)\/|ak|x®k.
k=0 k=0 k=0

Then, (®(u),¥,) = f({u,v)) since the sign of aj is now taking care by ¥. The norm can be
calculated as

12(w)]|* = (@(w), u) = D _{(v/]ax[u®, ]aru®")
k=0
=D lawl (0 =3 Jagl(u,w) =Y Jaxlull3,
k=0 k=0 k=0

where the last equality follows from Exercise 3.7.4. A similar calculation can be carried out for
1% (w)|%. ®
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Random matrices

4.1 Preliminaries on matrices

Problem (Exercise 4.1.1). Suppose A is an invertible matrix with singular value decomposition

n

-

A= E S;UiV;
i=1

Check that

Answer. Let A = UXV*, and it suffices to check that
A Z ;viui =1,.
i=1
Indeed, by plugging A, we have
YT “ou | = : =
(Z SiUV; > (Z " ViU, ) Z Sluzv Vil Zul =UU
i=1 =il i=1
where all the cross-terms vanish since v, v; = 0 as V is orthonormal, and Y, wu] =UU" =1,

since U is again orthonormal. ®

Problem (Exercise 4.1.2). Prove the following bound on the singular values s; of any matrix A:

< \[HAHF

Answer. We have seen that ||A||r = ||s]2 = /Y s, hence

A% = Zs >Zs > is?

k<i

since we arrange si’s in the decreasing order. This proves the result. ®

Problem (Exercise 4.1.3). Let Ay, be the best rank k approximation of a matrix A. Express || A—Aj||?
and ||A — Ax|% in terms of the singular values s; of A.
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Answer. From Eckart-Young-Mirsky theorem, we have

k

.

A = E S3UV;
=

hence .
A—Ak = Z siuiv:.
i=k+1
This implies, the singular values of the matrix A — Ay are just sx41, ..., S,,” implying
2 2
A — Ag||® = si41,
and

n
JA- Az = 3 &2
i=k-+1

®This can be seen from the fact that the same U and V still work, but now s; =0 for all 1 <7 < k.

Problem (Exercise 4.1.4). Let A be an m xn matrix with m > n. Prove that the following statements
are equivalent.

(a) ATA=1,.
(b) P:= AAT is an orthogonal projection® in R™ onto a subspace of dimension 7.

(c) A is an isometry, or isometric embedding of R™ into R™, which means that

|Az||2 = ||z||2 for all x € R™.

(d) All singular values of A equal 1; equivalently

%Recall that P is a projection if P2 = P, and P is called orthogonal if the image and kernel of P are orthogonal
subspaces.

Answer. It’s easy to see that (a), (c), and (d) are all equivalent. Indeed, for (a) and (c), we
want ||Az||3 = (Az)"(Az) = vATAx = z'x = ||z||3, and the equivalency lies in the equality
rATAx = 2" 2. If |Az|s = ||z||2 holds for all z, since AT A is a symmetric matrix, we know that
this means AT A = I,,. On the other hand, if AT A = I,,, then we clearly have the equality. For (c)
and (d), noting the Equation 4.5 suffices. Now, we focus on proving the equivalence between (a)
and (b).

e (a)=(b): Suppose ATA = I,. Then P = AA" is a projection since P> = AATAAT =
AILAT = AAT = P. Moreover, observe that PT = P, hence P is also an orthogonal
projection.

Finally, we need to show that rank(P) = rank(AA") = n. But since ATA = I,,,
n = rank(I,) = rank(A" A) < rank(A4) < n

as matrix multiplication can only reduce the rank, hence rank(4) = n. This also implies
rank(AT) = n, hence we're left to check whether Im A" Nker A = @. If this is true, then
rank(AAT) = n as well, and we're done. But it’s well-known that Im AT = (ker A)", which
completes the proof.

o (b)=(a): We want to show that if P = AAT is an orthogonal projection on a subspace of
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dimension n, then AT A = I,,. Observe that since P2 = P,
(AAT)(AAT) = AAT & A(ATA-T1,)AT =0.

Now, we use the fact that rank(P) = rank(AA") = n. From the previous argument, we know
that rank(A) = rank(A ") = n, and hence

A(ATA-TH)AT =0=> A(ATA-1,)=0
as AT spans all R”. Taking the transpose, we again have
(ATA-1,)TA"=0=(ATA-1,)" =0

since again, AT spans all R”. We hence have AT A = I,, as desired.

®
“Note that such a characterization is standard. See here for example.
Problem (Exercise 4.1.6). Prove the following converse to Lemma 4.1.5: if (4.7) holds, then
|ATA — L,|| < 3max(,46?).
Answer. Firstly, by the quadratic maximizing characterization, we have
lATA- Ll = max = (ATA-L)zy)
< max o (ATA~ Lol = max [l4z] - 1]
Since we assume that |Az||2 € [1 — 6,1+ d] (with x € S~ now),
|ATA - I,|| < max|(146)? — 1| = max|6? £ 26| < 3max(d,s?).

®

Problem (Exercise 4.1.8). Canonical examples of isometries and projections can be constructed from
a fixed unitary matrix U. Check that any sub-matrix of U obtained by selecting a subset of columns
is an isometry, and any sub-matrix obtained by selecting a subset of rows is a projection.

Answer. Consider a tall sub-matrix A, «xx of Uy, x, for some k& < n. We know that A is an isometry
if and only if AT is a projection. From Remark 4.1.7, it suffices to check AT A = I;,. But this
is trivial since U is unitary, and we’re basically computing pair-wise inner products between some
columns (selected in A) of U.

On the other hand, consider a fat sub-matrix Byx, of U,x, for some k < n. We want to show
that BT B is an orthogonal projection (of dimension k). From Fxercise 4.1.4, it’s equivalent to
showing BT is an isometry, and from the above, it reduces to show that U is also unitary since
BT can be viewed as a tall sub-matrix of U ". But this is true by definition. ®

Week 13: Covering and Packing Numbers
4.2 Nets, covering numbers and packing numbers

Problem (Exercise 4.2.5). (a) Suppose T is a normed space. Prove that P(K,d,¢) is the largest
number of closed disjoint balls with centers in K and radii /2.

(b) Show by example that the previous statement may be false for a general metric space T.
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Week 13: Covering and Packing Numbers

Answer. (a) Consider any e-separated subset of K. Then, B(z;,€¢/2)’s are disjoint since if not,
then there exists y € B(x;,€/2) N B(x;,€/2) such that

N

a contradiction. On the other hand, if d(z;, ;) < € then

T; + X

5 € Blwi,¢/2) N Blaj¢/2),

hence, there is a one-to-one correspondence between e-separated subset of K and families of
closed disjoint balls with centers in K and radii €/2, proving the result.

(b) Let T'=Z and d(x,y) = ly2,. For K = {0,1} and € = 1, we have P(K,d,1) = 1. On the
other hand, B(0,1/2) = {0} and B(1,1/2) = {1} are disjoint. If the result of (a) holds, then
at least P(K,d,1) = 2 as there are exactly two such disjoint closed balls.

®

Problem (Exercise 4.2.9). In our definition of the covering numbers of K, we required that the
centers x; of the balls B(z;,€) that form a covering lie in K. Relaxing this condition, define the
exterior covering number N°**(K d, €) similarly but without requiring that z; € K. Prove that

NYK,d,e) < N(K,d,e) < N*(K,d,e/2).

Answer. The lower bound is trivial. We focus on the upper bound. Consider an exterior cover
{B(z;,¢/2)} of K where z; might not lie in K. Now, for every i, choose exactly one y; from

B(x;,¢/2) N K is it’s non-empty. Then, {B(y;,€)} covers K since
E(II&', 6/2) NK g E(y“ 6)
from d(xz,y;) < d(z, ;) + d(zi,y;) < €/2+ €/2 = € for any © € B(x;,¢/2). Hence, by taking the
union over i, {B(y;,€)} indeed cover K, so the upper bound is proved. ®
Problem (Exercise 4.2.10). Give a counterexample to the following monotonicity property:
L C K implies N(L,d,e) < N(K,d,e).
Prove an approximate version of monotonicity:
L C K implies N(L,d,e) < N(K,d,€/2).

Answer. The problem lies in the fact that we’re not allowing exterior covering. Consider K = [—1, 1]
and L = {-1,1}. Then, N(L,d,1) =2 >1=N(K,d,1) for d(z,y) = |z — y|.

The approximate version of monotonicity can be proved with a similar argument as Exercise
4.2.9: specifically, consider an €/2-covering {z;} of K with size exactly N (K, d, €/2). Now, for every

i, choose one y; € E(a:i,el2) N L if the latter is non-empty. It turns out that {B(y;,€)} covers L.
Indeed, B(x;,€/2) N L C B(y;,€) since

d(z,y;) < d(z,x;) + d(xi,y;) <

N A

for all x € B(z;,€/2). ®

Intuition. The fundamental idea is just every such B(y;, €) can cover B(z;,€/2).

Problem (Exercise 4.2.15). Check that dp is indeed a metric.
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Answer. We check the following.
e dy(z,z) =0 for all z and dg(x,y) > 0 for all z # y: Trivial.
o dy(z,y) =dpu(y,x) for all x,y: Trivial.

o dy(z,y) < dg(z,z) +du(y,z) for all z,y, z: Suppose z and y initially disagrees at dg(x,y)
places, and denote the set of those disagreeing indices as I. Then for any z, as long as z and
x (hence y) disagrees at an index outside I, dy(x,2) + dg(y, 2) increases by 2. There’s no
way to exist a z such that dy(z,2) + dg(y, z) can decrease, at best z and z (or y) disagrees
at an index in I, then it’ll coincide with y (or ), contributing the same amount to dg(z,y).

®

Problem (Exercise 4.2.16). Let K = {0,1}". Prove that for every integer m € [0, n], we have

2™ 2™
—=m §N<K7dH7m> <P(K,dg,m) < ey y
S () i ()

Answer. The middle inequality follows from Lemma 4.2.8. Now, for K = {0,1}", we first note that
we have | K| = 2". Furthermore, observe the following.

Claim. For any z € K, we have

Hy € K:du(z,y) <m}| = Zl{y SHECHC)IS TS Z (Z>

k=0 k=0
We then see the following.

e Lower bound: observe that |K| < N(K,dg,m){y € K: dg(z;,y) < m}| where {z;} is an
m-net of K of size N(K,dg,m).

e Upper bound: observe that |K| > P(K,dy,m)|{y € K: du(z;,y) < |m/2]}| where {z;} is
m-packing of size P(K,dg,m).

Plugging the above calculation complete the proof of both bounds. ®

Remark. Unlike Proposition 4.2.12, we don’t have the issue of “going outside K” since we’re working
with a hamming cube, i.e., the entire universe is exactly the collection of n-bits string. Moreover,
for the upper bound, we use |m/2] since m € N, and taking the floor makes sure that {y €
K:dy(zx,y) < |m/2]}’s are disjoint for {x;} being m-separated. Hence, the total cardinality is
upper bounded by |K]|.

Week 14: Random Sub-Gaussian Matrices
4.3 Application: error correcting codes

Problem (Exercise 4.3.7). (a) Prove the converse to the statement of Lemma 4.3.4.

(b) Deduce a converse to Theorem 4.3.5. Conclude that for any error correcting code that encodes
k-bit strings into n-bit strings and can correct r errors, the rate must be

R<1- f()

where f(t) = tlog,(1/t) as before.
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Answer. Omit. ®

4.4 Upper bounds on random sub-gaussian matrices

Problem (Exercise 4.4.2). Let € R™ and A be an e-net of the sphere S"~!. Show that

1
{@,y) <llzllz < 7 (z,y).

sup sup
yeN — € yeN
Answer. The lower bound is again trivial. On the other hand, for any x € R", consider an zy € N/
such that ||zg—z/||z||2||2 < € (normalization is necessary since N is an e-net of S"~1, while z € R").
Now, observe that from the Cauchy-Schwarz inequality, we have

— zo|| < €l|z|l2,

95
ez — (@, o) = <x S > < Jlall
el

x
]l2

which implies (z,xo) > (1 — €)||z||2. This proves the upper bound. ®

Problem (Exercise 4.4.3). Let A be an m x n matrix and € € [0,1/2).

(a) Show that for any e-net A/ of the sphere S"~! and any e-net M of the sphere S™~! we have

sup  (Az,y) <||A[l < sup  (Az,y).
zEN,yeEM 1—2¢ reEN,yeM
(b) Moreover, if m = n and A is symmetric, show that
sup [(Az, z)| < ||A]l < - sup |[(Azx, x)|.
zeN 1—-2€ gen

Answer. (a) The lower bound is again trivial. On the other hand, denote z* € S"~! and y* €
S™=1 such that ||A| = (Az*,y*). Pick o € N and yo € M such that ||z* —xol|2, [|y* —yoll2 <
€. We then have

<Ax*,y*> - <Ax03y0> = <A(.’E* - mO)vy*> + <A‘T07y* - y0>
< JAl(le* = zollallyllz + llzo ll2lly” — volla) < 2€l|A]

as |ly*|| = ||zoll2 = 1. Rewrite the above, we have

IA[l = (Azo, yo) < 2¢[|All = [ Al < (Azo,y0) < sup  (Az,y).

1—2¢ _]‘_261'6./\[,’!/6/\/

(b) Following the same argument as (a), with y* := z* and yg := x¢. To be explicit to handle the
absolute value, we see that

[(Az™, 2%)| = [(Azo, zo)| < [(A2™, 27) — (Ao, w0)| < 2¢[Al,
from the same argument. The result follows immediately.

®

Problem (Exercise 4.4.4). Let A be an m x n matrix, 4 € R and € € [0,1/2). Show that for any
e-net A of the sphere S"~!, we have

C
sup. [ Az — o < T - supl | Al — .
zeSn—1 — 4€ geN
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Answer. Let u = 1. Firstly, for z € S"~1, observe that we can write
1 4z[l3 - 1| = (Rz, )

for a symmetric R = AT A — I,,. Secondly, there exists z* such that ||R| = (Rz*,z*), consider
xo € N such that ||zg — z*|| < e. Now, from a numerical inequality |z — 1| < |22 — 1] for z > 0, we
have

sup ||| Az]lz — 1| < sup || Az]3 - 1] = [IR|
zesn—1 zesn—1

1
< sup (R, z)| = 1 Sg/lngleHg =1ll;

1_2616/\/ _2626

where the last inequality follows from Exercise 4.4.3. Further, factoring |||Az||3 — 1| get

1
sup ||| Az]lz — 1] < 5 sup [[|[Az[2 — 1| (| Az]l2 +1).
zesSn—1 — 2€ zeN

If |A]| <2, then ||Az||2 +1 < 3, and C = 3 suffices.
On the other hand, if ||A]| > 2, consider directly computing the left-hand side

sup |[|Az|l2 — 1| = ||All - 1

zesSn-1

where the maximum is attained at some 2’ € S"~1. With the existence of 2" € NN{z: ||z — 2|2 <
€}, the supremum over N can be lower bounded as

sup [ Aclls — 1 > 142" =1 > [ A2'lls — [ A@” — 2')]l2 = 1> AI(1 ) = 1> 1 - 2.
zEN

The above implies the following.
o Il < = (sup,en [Az]2 — 1] + 1).
o sup,cn |||Az]l2 — 1] > 1 — 2e.

This allows us to conclude that

-1

IN

1
sup |[[|Azflz —1f = [lAfl =1 < — (Sup|||1490||2—1|+1
resn—1 — € \zeN

<

1 3
— (sup [|Az]|2 — 1] + e)
— € \zeN

1 sup ||| Azz — 11,
N

1_26$E

provided that

1—2¢ (1+ e) S 1 —2esup,cpll|Azlla — 1] + €

C=3> =
< Ssup d/ — 1—¢ SupxeN|||A$H2*1|

d>1-2¢ 1 —¢

)

which is true since the middle supremum is just 1. The case that p # 1 can be easily generalized
by considering R = AT A — ul,. ®

Problem (Exercise 4.4.6). Deduce from Theorem 4.4.5 that

E[lAl] < CK(Vm + Vn).
Answer. From Theorem 4.4.5, for any ¢ > 0, we have

P(|A]| — CK(v/m + v/n) > CKt) < 2exp(—t2).
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Then we immediately have
E[|All = CK(vm + v/n)] = E[||A]] - CK(vm + v/n)
= / P(|A|| - CK(vm + +/n) > CKt)CK dt
0

< QCK/ exp(—t?) dt = CK/r,
0

hence E[||A|]] < CK(y/m + /n + /), and choosing a large enough C' subsumes /7. ®

Problem (Exercise 4.4.7). Suppose that in Theorem 4.4.5 the entries A;; have unit variances. Prove
that for sufficiently large n and m one has

E[Al] = 7 (Vm +v/n).

=

Answer. Clearly, by choosing x = e; € S"71,

[All = sup [[Azlls > [|(Air)1<i<mll2-
ES"71

T

On the other hand, by pleIHg r = (A11/||(A1j)1§j§n||25'"7A1H/H(A1j)1§j§n||2) c S7—1 and
y=-e; € S™ ! we have

Alj

| Al = sup (Az,y) > ) H(Ay—Alj = [[(Aj)1<icnll2-
j=1 g

sesn—t yesm1 J1<j<nll2
Hence, ||A]|| is lower bounded by the norm of the first row and column, i.e.,
[A[l > max([| (Ai)1<i<mll2, [|(A17)1<5<nll2)-
Exercise 3.1.4 (b), the expectation of || A|| is then greater than or equal to max(y/m—o(1), /n—o(1))
by Thus, E[||A[|] > (v/m + v/n — o(1))/2. ®

Remark. An easier way to deduce the second (i.e., lower bounded by the norm of the first row) is
to note that ||AT || = ||A|| by some elementary (functional) analysis.

Week 15: Stochastic Block Model and Community Detection
4.5 Application: community detection in networks

Problem (Exercise 4.5.2). Check that the matrix D has rank 2, and the non-zero eigenvalues \; and
the corresponding eigenvectors u; are

P+q L/2x1 P—q Ly/2x1
MM=—]|n, wu= , X=——]n, wuy= .
! ( 2 ) ! |:]]-n/2><1 ? 2 R e
Answer. Let n be an even number. Firstly, for any D € R™*" columns 1 to n/2 are identical, same
for columns n/2 + 1 to n. Furthermore, since p > ¢, column 1 and n/2 4 1 are linear independent,
so rank(D) = 2.

Instead of solving the characteristic equation and find the eigenvalues, and find the corresponding
eigenvectors later, since we know that rank(D) = 2, it’s immediate that there are only 2 non-zero
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eigenvalues. Hence, we directly verify that

+ - 1 ’
= (B ) w=tea, de= ()0, wp= (X2 )
2 2 7]]-1><n/2

For A\, indeed, since

o (0 1
e 1
. p+q
Du; = Muy = : = (2 ) n-
o 1
e !
On the other hand, for Ay, we have
2 !
mom| 1
Dug = Aus = = (qu) n- s
Py o
gt -1
which again holds. ®

Problem (Exercise 4.5.4). Deduce Weyl’s inequality from the Courant-Fisher’s min-max character-
ization of eigenvalues.

Answer. We have that from the Courant-Fisher’s min-max characterization,

Ai(A) = max min (Az,z).
dim E=i zS(E)

Now, as A\;(A) = —A—i+1(—A), we see that

Ai(A) = —An—ira(=4) = = dim Boreit1 zénsl(l}s)<_Ax’w> T dim Bmneit1 zrgrgag)(Ax,w).

We now show the Weyl’s inequality.

Theorem 4.5.1 (Weyl's inequality). Ait;—1(A+ B) < Ai(A) + A;(B) < Aiyj—n(A+ B).

Proof. We first show the lower-bound. From the Courant-Fisher’s min-max characterization,
it suffices to show that for any E with dim ' = i+ j — 1, there exists some x € S(E) such that
(A+ B)z,z) < Ai(A) + i(B).

We first analyze A\;(A4). We know that from the max-min characterization,

Ai(A) = min max (Az,z),
dim E=n—i+1z€S(E)

i.e., there exists some F4 with dim £y = n — i+ 1 such that \;(A) = max,eg(p,)(Az, ).
Similarly, there exists some Ep with dim EFp = n — j 4 1 satisfying the same property. Hence,
it suffices to find some unit vector x in E4 N Eg N E. We see that

dim(EAﬂEB) >dimEs+dimEg —n=n—i—j+2,

which implies that F4 N Ep will have a non-trivial intersection with F since dmFE =i+ j—1,
hence we’re done. For the upper-bound, taking the negative gives the result. |
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To obtain the spectral stability, we see that from Weyl’s inequality, we have
))'. = An(B) < M(A+ B) — \i(A) < M(B).

Given any symmetric S, T, by setting A :=T and B := S — T, the upper-bound yields
Ai(8) = Mi(T) <M (S-T) =[S - T||.
On the other hand, by setting A := S and B :=T — 5, the upper-bound again yields
Ai(T) = Mi(S) < M(T = 8) =T -S| =I5-T|.
As this holds for every i, we have

max|A;(S) = Ai(T)| < [|S =Tl

as we desired. ®

Week 16: Tighter Bounds on Sub-Gaussian Matrices

4.6 Two-sided bounds on sub-gaussian matrices 13 Jun. 2024
Problem (Exercise 4.6.2). Deduce from (4.22) that
} < CK? ( 2y n) .

m m

Answer. We have that for any ¢ > 0, with probability at least 1 — 2exp(—1€2)7

1
E H‘ATA—In
m

4
< K*max(8,6%), where § = L
< K*max(d,6%), where C’( m+ﬁ)’

Jcex(5-2)

Firstly, we know that with u := Kz((\/% + 2CZT\/E)t + %ztz), we get exactly

> K2 (C,/n +02n) +u) < 2et,
m m

. . . . . . — 2 mn 2 n
Then, from the integral identity with the substitution v == u + K*(C\/ 7 + C**),

K*(C\/E+C?n) ) 1
:</ +/ )P(HATA—I,L >u> dv
0 K2(Cy/2+C22) m
K*(Cy/2+C2) 0o 1
g/ 1dv+/ P(HATAfn >v) dv
0 K2(Cy/Z4C22) m

o 1
—K? (c,/”+02"> +/ P(HATA—In > K? (C,/”+02”> +u) i
m m 0 m m m

1
m

HATAIn

and we want to prove

E H‘lATAIn
m

P (HIATA -1,
m

E [HlATA —1I,
m
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plugging back v = u+ K*(C\/Z 4+ C*2),

§K2<c,/ +02 >+/ 2¢~t du

2 2
:KQ( 1/ 02"> 2etK2(O W+2Ct>dt
m vm m m
2 2 2
:KQ( = +02n>+K2< <C+20‘/ﬁ>+c),
m vm m m
which is asymptotically =< K?( L)) ®

Problem (Exercise 4.6.3). Deduce from Theorem 4.6.1 the following bounds on the expectation:
Vi — CK%\/n < E[s,(4)] < E[s1(4)] < vim + CK2/n.
Answer. From Theorem 4.6.1, for any ¢t > 0,
vm — CK(vVn+1t) < sp(A) < 51(A) < vVm+ CK?(Vn +t)

with probability at least 1 — 2exp(—t?). We want to show that

Vi — CK%\/n < Els,(4)] < E[s1(4)] < vim + CK%/n.

Consider
€= max (0, v/m — CK?\/n — s,(A), s1(4) — vm — CK?\/n) -
o CK?2 =

then from the integral identity,

which proves the result. ®

Problem (Exercise 4.6.4). Give a simpler proof of Theorem 4.6.1, using Theorem 3.1.1 to obtain a
concentration bound for |Az||; and Exercise 4.4.4 to reduce to a union bound over a net.

Answer. From the proof of Theorem 4.6.1, we know that S"~! admits a 1/4-net A/ such that
IN| < 9™. Furthermore, for any z € A/, we have

o E[(Ai, )] = (E[Ai], 2) = (0,z) = 0;
o E[(A4;,2)Y =2 "E[A] Ajlx =2 I,z =1 (z € S"! too);
* [[{Ai, 2) [y, < [|Ailly, < K for all d,

by Theorem 3.1.1, we have [|[|[Az|2 —v/m]|,, < CK?. From Proposition 2.5.2 (i), for any ¢ > 0,

P <|||Ax||2 — Vm| > CK(y/nlog9 +t)>
< Qexp(—( nlog9 + t)2> < 2exp(—(nlog9 + t2)) —2.97 ™.t

Finally, from Exercise 4.4.4, with a union bound over N, we have

P (ﬁ {mf 20K2(\/nlog9 +t) < su(A) < 51(A) < vm + 20K2(1/nlog9 +t)}>
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by the definition of s,,(A) and s1(A), we have

<P ( max || Az||2 — v/m| > 2CK?(y/nlog9 + t))
zelSHal
<P (2m£}\)f(|A:c||2 —v/m| > 2CK?(y/nlog9 + t)>
fAS

< > P(|l4zl: - vim| > CK(\/nlogd +1))

zeEN
<9".2.97".¢e

—t? —t2

= 2e

Scaling C' accommodates the additional log9 factor finishes the proof. ®

4.7 Application: covariance estimation and clustering

Problem (Exercise 4.7.3). Our argument also implies the following high-probability guarantee. Check
that for any v > 0, we have

IS — 2| < CK? ( nEu L "*“) Iz
m m

with probability at least 1 — 2e™".

Answer. Omit ®

Problem (Exercise 4.7.6). Prove Theorem 4.7.5 for the spectral clustering algorithm applied for the
Gaussian mixture model. Proceed as follows.

(a) Compute the covariance matrix ¥ of X; note that the eigenvector corresponding to the largest
eigenvalue is parallel to pu.

(b) Use results about covariance estimation to show that the sample covariance matrix %, is close
to %, if the sample size m is relatively large.

(¢) Use the Davis-Kahan Theorem 4.5.5 to deduce that the first eigenvector v = v1(%,,) is close
to the direction of u.

(d) Conclude that the signs of {u, X;) predict well which community X; belongs to.

(e) Since v &~ p, conclude the same for v.

Answer. Omit ®
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Chapter 5

Concentration without independence

Week 17: Concentration of Lipschitz Functions on Spheres
5.1 Concentration of Lipschitz functions on the sphere

Problem (Exercise 5.1.2). Prove the following statements.
(a) Every Lipschitz function is uniformly continuous.

(b) Every differentiable function f: R™ — R is Lipschitz, and

[1fllip < sup [[V.f(2)]l2.
TER™

(¢) Give an example of a non-Lipschitz but uniformly continuous function f: [-1,1] — R.

(d) Give an example of a non-differentiable but Lipschitz function f: [-1,1] — R.

Answer. Omit. ®

Problem (Exercise 5.1.3). Prove the following statements.

(a) For a fixed # € R™, the linear functional

f(@) = (2,0)
is a Lipschitz function on R™, and || f|Lip = [|0]2-

(b) More generally, an m x n matrix A acting as a linear operator
A (R [fl2) = (R™, [|-]]2)
is Lipschitz, and ||A||Lip = ||4].
(¢) Any norm f(z) = ||z|| on (R™,||-||2) is a Lipschitz function. The Lipschitz norm of f is the
smallest L that satisfies

||lz|| < L||z||2 for all z € R™.

Answer. Omit. ®

Problem (Exercise 5.1.8). Prove inclusion (5.2), i.e., H; D {x € v/nS™1: z; < t/V/2}.

Answer. Omit. ®
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Problem (Exercise 5.1.9). Let A be the subset of the sphere v/nS"~! such that
o(A) > 2exp(—cs®) for some s > 0.
(a) Prove that o(A4,) > 1/2.
(b) Deduce from this that for any ¢ > s,

o(Ag) >1— 2exp(—ct2).

Here ¢ > 0 is the absolute constant from Lemma 5.1.7.

Answer. Omit. ®

Problem (Exercise 5.1.11). We proved Theorem 5.1.4 for functions f that are Lipschitz with respect
to the Euclidean metric ||z — y||2 on the sphere. Argue that the same result holds for the geodesic
metric, which is the length of the shortest arc connecting x and y.

Answer. Omit. ®

Problem (Exercise 5.1.12). We stated Theorem 5.1.4 for the scaled sphere /nS™"~!. Deduce that a
Lipschitz function f on the unit sphere S™~! satisfies

Cllf lip
ﬁ b

where X ~ U(S™"1). Equivalently, for every t > 0, we have

1/(X) = ELf (X[l <

P(If(X) - E[f(X)]| 2 t) < zexp< cnt” )

1£12sp

Answer. Omit. ®

Problem (Exercise 5.1.13). Consider a random variable Z with median M. Show that
c|Z —E[Z]|y, < |Z — M|y, < C||Z — E[Z]|y,,
where ¢, C' > 0 are some absolute constants.
Answer. Omit. ®

Problem (Exercise 5.1.14). Consider a random vector X taking values in some metric space (T, d).
Assume that there exists K > 0 such that

IF(X) = B[ (lw, < Kl fllLip

for every Lipschitz function f: T — R. For a subset A C T, define (A) :=P(X € A). (Then o is
a probability measure on T'.) Show that if o(A) > 1/2 then, for every t > 0,

o(A) > 1—2exp(—ct®/K?)
where ¢ > 0 is an absolute constant.

Answer. Omit. ®

Problem (Exercise 5.1.15). From linear algebra, we know that any set of orthonormal vectors in R"
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must contain at most n vectors. However, if we allow the vectors to be almost orthogonal, there
can be exponentially many of them! Prove this counterintuitive fact as follows. Fix e € (0,1). Show
that there exists a set {z1,...,zx} of unit vectors in R™ which are mutually almost orthogonal:

(s, 2;)| < € for all i # j,
and the set is exponentially large in n:
N > exp(c(e)n).

Answer. Omit. ®

.2 Concentration on other metric measure spaces

Problem (Exercise 5.2.3). Deduce Gaussian concentration inequality (Theorem 5.2.2) from Gaussian
isoperimetric inequality (Theorem 5.2.1).

Answer. Omit. ®
Problem (Exercise 5.2.4). Prove that in the concentration results for sphere and Gauss space (The-

orem 5.1.4 and 5.2.2), the expectation E[f(X)] can be replaced by the LP norm (E[f(X)?])'/? for
any p > 1 and for any non-negative function f. The constants may depend on p.

Answer. Omit. ®

Problem (Exercise 5.2.11). Let ®(x) denote the cumulative distribution function of the standard
normal distribution A(0,1). Consider a random vector Z = (Z1, ..., Zy,) ~ N(0,1,,). Check that

o(Z) = (®(Z1),...,9(Z,)) ~U([0,1]™).
Answer. Omit. ®
Problem (Exercise 5.2.12). Expressing X = ¢(Z) by the previous exercise, use Gaussian concentra-

tion to control the deviation of f(¢(Z)) in terms of || f o ¢||Lip < ||fl|Lipll@|lLip.- Show that [|¢||Lip is
bounded by an absolute constant and complete the proof of Theorem 5.2.10.

Answer. Omit. ®

Problem (Exercise 5.2.14). Use a similar method to prove Theorem 5.2.13. Define a function
¢: R® — /nBY that pushes forward the Gaussian measure on R™ into the uniform measure on
/nBY, and check that ¢ has bounded Lipschitz norm.

Answer. Omit. ®

.3 Application: Johnson-Lindenstrauss Lemma

Problem (Exercise 5.3.3). Let A be an m xn random matrix whose rows are independent, mean zero,
sub-gaussian isotropic random vectors in R™. Show that the conclusion of Johnson-Lindenstrauss

lemma holds for @ = (1//m)A.

Answer. Omit. ®

Problem (Exercise 5.3.4). Give an example of a set X of N points for which no scaled projection
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| onto a subspace of dimension m < log N is an approximate isometry.

| Answer. Omit. ®

Week 18: Tighter Bounds on Sub-Gaussian Matrices
5.4 Matrix Bernstein’s inequality

Problem (Exercise 5.4.3). (a) Consider a polynomial
fl@) =ao+az+ -+ apa’.
Check that for a matrix X, we have
f(X)=aol +a1 X+ +a,XP.

In the right side, we use the standard rules for matrix addition and multiplication, so in
particular, X? = X --- X (p times) there.

(b) Consider a convergent power series expansion of f about zg:

x) = Z ag(z — z0)"
k=1

Check that the series of matrix terms converges, and

Z ap(X — xOI
Answer. Let X = UAUT be the symmetric eigendecomposition of X.
(a) Since X¥ =UAUT ---UAUT =UAL---TAUT = UA*UT for all k > 0, then

P P
f(X)=Uf(A (Z%Ak) :ZakUAkUT:ZakX’“.
k=0

k=0

(b) Since X — xgl = U(A — xoI)UT, then by (a),

=U (iak( —xol) ) ZakU —zol)k Zak —zol)k
k=1

Problem (Exercise 5.4.5). Prove the following properties.
(a) || X <tif and only if —tI < X <tI.

(b) Let f,g: R — R be two functions. If f(z) < g(z) for all € R satisfying |z| < K, then
f(X) =< g(X) for all X satisfying || X| < K.

(c) Let f: R — R be an increasing function and X,Y are commuting matrices. Then X <Y

implies f(X) = f(Y).
(d) Given an example showing that property (c) may fail for non-commuting matrices.

(e) In the following parts of the exercise, we develop weaker versions of property (c) that hold
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for arbitrary, nor necessarily commuting, matrices. First, show that X < Y always implies
tr f(X) < tr f(Y) for any increasing function f: R — R.

(f) Show that 0 < X <Y implies X! < Y1 if X is invertible.

(g) Show that 0 < X <Y implies log X < logY.

Answer. Let X = UAUT and Y = VMV T denote the symmetric eigendecompositions of X and
Y, respectively. Additionally, let A := diag(A) and p := diag(M) in R™.

(a) By the Courant-Fisher min-max theorem w.r.t. A\; and A,

|X|<te Atl<A<tletlEA>00tI £ X =0& —t] < X < tI.
(b) Since |A| < K1, then g(A) — f(A) > 0. This implies that g(X) — f(X) = U(g(A) — f(A)UT
has non-negative eigenvalues. Therefore, g(X) = f(X).

(¢) Since X and Y are symmetric and commute, then Y admits an eigendecomposition with V' =
U. This implies A < p. Tt follows that f(u)— f(\) > 0,50 f(Y)— f(X) = U(f(M)— f(A)UT
has non-negative eigenvalues. Therefore, f(X) < f(Y).

MG 96 0)=6o

(d) We see that

while
NIE: o3 0\’ V43993 + 197 /43993 — 197
2 4 0 0 2 ’ 2 '
(e) Since X —Y =<0, then by the Courant-Fisher min-max theorem, for any i = 1,...,n,
Ai — ;i = max min v Xv— max min v Yo

dim E=i veS(E) dim E=i veS(E)

< max ( min v' Xv — min UTYU>
dim E=i \veS(E) veES(E)

< max max (v'Xv—v'Yv)= max max v' (X -Y)v<0
dim E=iveS(E) dim E=iveS(E)

Since f is increasing, then f(X\;) < f(u;) for all 4. It follows that
tr f(X Z Fx Z (i) = tr f(Y).

(f) Since X <Y, then I = X~ Y/2XX~1/2 < X~1/2y X~1/2. This implies \(X ~1/2Y X ~1/2) > 1.
Thus, A(X'/2Y~1X1/2) = A1 (X 12y X—1/2) < 1,50 X'/2Y~1XY2 < I. Tt follows that

Y—l _ X—l/Q(Xl/Qy—le/Q)X—l/Z j X_1/2IX_1/2 _ X_l.

(g) By (f), (X +tI)~t = (Y +¢tI)~! for t > 0. Since log z = log iii

I |
o —fo m z+tdt then

logX/Ooo((1+t)11(X+tI)1)dt-_</OOO((1+t)1I(YthI)l)dtlogY.

Problem (Exercise 5.4.6). Let X and Y be n x n symmetric matrices.
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(a) Show that if the matrices commute, i.e., XY =Y X, then
XY = eXeY.

(b) Find and example of matrices X and Y such that

eXHY £ eXeY |

Answer. (a) Since X and Y commute, by the binomial theorem and the substitution i := k — j,

XAV S K s AXT XYY
eXJrY:ZT:ZﬂZka jYJZQWZOW:eXGY'
i= j=

k=0 ’ k=0 j=0
(b) For X = ((1) _01) and Y := <(1) (1)),
XY _ (cosh\/é—i-sm\l}i\/§ Sm\}}iﬁ. ) . ey_1(62+1 62—1).
Sm\%ﬂ coshv2 — Sm\%ﬁ ’ 2\1—e? 1+e2
®
Problem (Exercise 5.4.11). Let X3,..., X be independent, mean zero, n x n symmetric random

matrices, such that || X;|| < K almost surely for all . Deduce from Bernstein’s inequality that

]5

Answer. Let 02 := |2~ E[X2]|. By the matrix Berstein’s inequality, for every u > 0, with the
substitution ¢ := ¢~ /20v/u + logn 4+ ¢ ' K (u + logn),

P <
Then by Lemma 1.2.1,

[

N
2%
i=1

1/2

V1+logn+ K(1+logn).

N

D%

=1

N

> E[X7]

i=1

E

N

>x,

=1

—cmin(ﬁ i)
>t ] <2ne oK) < 9pe~(utlogn) — gpo—u,

¢ 26 /T¥log n+c ' K (1+logn) ) N
_ / +/ P> Xi||>¢) at
0 c=1/25+/T+logn+c—1 K (1+logn) =1
¢ 26 /THlog n+c ' K (1+logn) e
< / 1dt + / 2e” " dt
0 c=1/20\/T+logn+c=1 K (1+logn)
=c Y20\ /T+logn+c¢ 'K(1+1o n)—l—/oer_“ ﬂ—i—c_lf( du
N s & 1 vu+logn
<c¢ V201 +logn+c*K(1+1lo n)—l—/oer_“ M-I—c_ll( du
- s & 1 v1+logn
1/2 I LK (1 +1 pet (2L L0 | iy
=c 1+ +c” +lo +2 | —/—/——+tc
¢ o ogn+c ( gn) + 2e < T losn c )
<oy/1+4logn+ K(1+logn),
which is exactly what we want to show. ®
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Problem (Exercise 5.4.12). Let €1, . . ., &, be independent symmetric Bernoulli random variables and
let Ay, ..., Ax be symmetric n x n matrices (deterministic). Prove that, for any ¢t > 0, we have
N
P ( Z&'Ai > t) < 2neXp(—t2/202),
i=1

N
where o2 = |3, A?||.

Answer. Let o2 := ||Y.N | 42| and A == t/02 > 0. By Exercise 2.2.3,

tr ezﬁ\lzl log]E[eAEiAi'] _ trezi\rzl log cosh(AA;) S tre zNzl ’\2—2.4? S neL;Amax(Zﬁvzl A?) _ ne#
Then by the Chernoff bound and Lieb’s inequality,
N N
i=1
= e M treZiti log Bl ] < o, M nef'z%.
.. N _ 2
Similarly, P(Amin (D ;1 €ids) < —t) < ne” 2.7, ®
Problem (Exercise 5.4.13). Let €1,...,eny be independent symmetric Bernoulli random variables
and let Ap,..., Ay be symmetric n X n matrices (deterministic).
1. Prove that
e = 1/2
E (| edif| <CyV1+logn | A
i=1 i=1
2. More generally, prove that for every p € [1,00), we have
P 1/2

1/p
) < C/p+logn

N N
i=1 i=1

Answer. Since (a) follows from (b) with p = 1, we will only prove (b) here. As the inequality
trivially holds for n = 1 with C' = 1, let’s assume n > 2 from now on.

Note that if 1 < p < 2, then by Stirling’s approximation I'(z) < /2= (5)2 eTs,

€

p—1

o D 1/p o P p 1/p % 2p
([ tosen+tas) < ([Terorattas) —r(8)" s TR
0 0 2 227 pe2 6p2

and that if p > 2, then by Minkowski’s inequality (and the same Stirling’s approximation),

00 1/p
< </ (e_%((log@n))%_% Jrsé_P))pds>
0
then by Minkowski’s inequality (i.e., || f + gllze < || fllze + |l9]lz7)s
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then by some direct calculations,

Let o2 == |3N | A2||. By Exercise 5.4.12, for any t > 0,

N p N
p< A, ) :p(
i=1 i=1

+2/p

> tl/p> < 2ne” 27 .

Zsi Z&'A

Then with the substitution ¢ =: (0/2(log(2n) + 5))p7 by Lemma 1.2.1 and Minkowski’s inequality,

p (o4/2108(2n))" o0
<E ) J A ( t) v

/(U\/Qlog(Qn))p Y

0

N p 1/p

Z 51'Ai

i=1

S e

IN

&2 +2/p
1dt+/ , 2ne” 207 dt
(U\/Qlog(2n))

oo p 1/p
((J 210g(2n))p+/0 675@(10g(2n)+3)%’1 ds>
3 1/p
Vs (Vioga +5 [ e togtzn) + ) as)

< V20 ( log(2n) + (§>1/p (/OOO e *(log(2n) + )7} ds) UP)

plugging in the bound we have established in the beginning,

<20 ( log(2n) + (g)l/p ((log(zn))é;]lpﬂ + W))

1 T2p %
=20 — log(2n)) » ]lp>2> log(2n) + %
V2e? " &?
< \/50 (( + ee1og(16) log(2n) + ﬁl \/f)>
V2e3
D+ log n,
which is exactly what we want to show. ®
Problem (Exercise 5.4.14). Let X be an n X n random matrix that takes values exe] , k= 1,...,n,

with probability 1/n each. (Here (eg) denotes the standard basis in R™.) Let Xj,..., Xy be
independent copies of X. Consider the sum S = Zf\;l X, which is a diagonal matrix.

(a) Show that the entry S;; has the same distribution as the number of balls in i-th bin when N
balls are thrown into n bins independently.

(b) Relating this to the classical coupon collector’s problem, show that if N =< n, then

logn

E[S] =

loglogn’
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Deduce that the bound in Exercise 5.4.11 would fail if the logarithmic factors were removed
from it.

Answer. (a) We see that X = ere] with k being chosen uniformly randomly among [n], where

eke;gr is a matrix with all 0’s except the k' diagonal element being 1. Hence, by interpreting

each X; as “throwing a ball into n bins,” Sgi records the number of balls in the k™ bin when
N balls are thrown into n bins independently.

We first observe that since S is diagonal, ||S|| = A1 (S) = maxy, Sk as all the diagonal elements
are eigenvalues of S. We first answer the question of how this related to the coupon collector’s
problem. Firstly, let’s introduce the problem formally:

Problem 5.4.1 (Coupon collector's problem). Say we have n different types of coupons
to collect, and we buy N boxes, where each box contains a (uniformly) random type of
coupon. The classical coupon collector’s problem asks for the expected number of boxes
(i.e., N) we need in order to collect all coupons.

Intuition. From (a), we can view S as the number of coupons we have collected for the
kth type of the coupon, where N is the number of boxes we have bought.

Hence, the coupon collector’s problem asks for the expected N we need for A, (S) = miny Skx >
0, while (b) is asking for the expected number of the most frequent coupons (i.e., maxy Ski)
we will see when buying only N =< n boxes.

Next, let’s prove the upper bound and the lower bound separately. Let 0 < ¢ < C to be some
constants satisfying N < Cn and n < ¢cN.

Claim (Upper bound). E[||S]|]] < logn/loglogn.

Proof. We first note that Sk ~ Binomial(V,1/n) for all k, so by Exercise 2.4.3, for any TFix
m > N/n, we have

{_mloglogn

P(|S|| > m) =P(Ek: S > m) <> P(Spx > m) < 3% s S -
k=1

Let L == [MJ+1>C+1>N/n,then

loglogn

EflISI] = (Z Z) (S| = m)
<Zl+23"+1 mloglogn

3%“7% (C+1)logn 3C+1=(C+)  (C+ 2)logn
=L-1+ loglogn = 2 loglogn =
I e - loglogn 2. % loglogn
establishing the desired upper bound. ®

The hard part lies in the lower bound. We will need the following fact.
Lemma 5.4.1 (Maximum of Poisson [Kim83; BSP09]). Given Y7,...,Y, R Pois(1),

E[maXY

_ logn
1<k<n

" loglogn’

Such a concentration is very tight.

Claim (Lower bound). E[||S||] = logn/loglogn
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Week 18: Tighter Bounds on Sub-Gaussian Matrices

Proof. Let My = Elmaxg{Yx} | S0, Y = T] with V3,...,¥, "K' Pois(1). As
(Y1,...,Y0) | > Y = T ~ Multinomial(T;1/n,...,1/n), we know that My is non-
decreasing w.r.t. T. Moreover, as y.,_, Y ~ Pois(n), by the law of total expectation
and maximum of Poisson lemma,

1 LneerTleJ o T
ogn e "n
— =< E Y| = M
loglogn Lgl;?gn k] + Zl T! T
T=0 po|ne?tae |1
I_nez+ij —n,,T €9 —n,,T
€ n (& n
< Z T! M[ne2+ij + Zl T T
T=0 T— Lne2+ﬁj+1

s 7n,nT

(&
<M -1
- LneQJrTleJ + Zl F(T)
T= [neZJrﬁJ—Q—l

From Stirling’s approximation, I'(z) > v/2m2*~/2e~* for z > 0,

= e "nT
<M _—
= ¥ nets | + Z /27 TT—1/2¢—T

T:LneZJrTleJJrl

T
e " = neT=r
=M
Lne®* 3¢ | T V2T Z ( T )

T= Lne2+ﬁj +1

since for all z > 0, z'/2* < e!/2¢ for & = T, we have

e " > neltse !
< MLne2+Tle:j + \/ﬂ Z T

1
T=|ne*t2e |41

o0

-T
- Lne le + /271' Z €

1
T=|ne’"2¢ |41

1
e~ n— |ne?T2e |—1

=M _—
\_ne2+2*1cj + /271'(1 _ 6’_1) ’

leading to
logn
M e
lne**2¢] ~ Toglog n

as the trailing term is decreasing exponentially fast. Finally, we have

ne2+ze ne2tze 1
MLMH%J < MP“H;“JWN < P < J My < I My < |'062+26—|MN’
N

where the second inequality follows from the triangle inequality of max. This leads to

1 > logn

E[|S|] =My > ———==M T e
[IIS11] N = (6624-%1 lne*t3e | ~ loglogn

as desired. ®

Finally, the bound in Exercise 5.4.11 will fail if the logarithmic factors were removed becomes
obvious after a direct substitution. Indeed, since || X;|| =1 = K, Exercise 5.4.11 states that

E
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Week 18: Tighter Bounds on Sub-Gaussian Matrices

where the logarithmic factors were removed along with K = 1. Now, using the bound
for § == SN, X, we have, with the observation that X? = X; and E[X?] = E[X;] =
diag(1/n,...,1/n), we see that the bound becomes /N/n = O(1), while the left-hand side
grows as logn/loglogn — oo, which is clear not valid.

®

Remark (Alternative examples). We give another example to demonstrate the sharpness of the matrix
Bernstein’s inequality. Consider the following random n X n matrix (slightly different from .S)

N n
T = Z Z bgljj)eke;,

i=1 k=1

where bg,iv) N Ber(1/N). Here, we view X; = > 7_, bg,]cv)eke,—';

Intuition. In expectation, T and S should behave the same. However, this is easier to work
with from independence.

Claim. As N — oo, with Y}, ~ Pois(1), we have

E[\(T)] =E [ max Tkk] —E [max Yk] e <loﬂ> .

1<k<n 1<k<n loglogn
Noticeably, the above claim doesn’t require n to vary with N.

Proof. For every k € [n], we apply the Poisson limit theorem since as N — oo, pnix = 1/N — 0
and E[S¥] = E[Zfil bl(.,iv)] =1=XAas N = co. Soas N — oo, S& B Pois(1).

With a similar interpretation as in (), we can interpret S& = Zf;l bg,iv) as the value
of the k" diagonal element of T, i.e., Tj;. Hence, as N — oo, for all k, Ti B Y. where
Yk R Pois(1). Since Ty’s are independent, we have T B diag(Zy,...,Zy,), therefore

logn
E\(T)] =E Lglggn Tkk] —E L?,?;(n Yk] =0 (bglogn)

from the maximum of Poisson lemma. ®

A simple calculation of ||ZZJ\;1 E[X?]||'/? reveals that the logarithmic factors can’t be removed.

Problem (Exercise 5.4.15). Let Xi,..., Xy be independent, mean zero, m x n random matrices,
such that ||X;|| < K almost surely for all 7. Prove that for ¢t > g0, we have

2
1[»( zqt> §2(m+n)exp<o21§t/3>,
02:max< Z]E[XiTXi] )

Answer. Consider the following N independent (m + n) x (m + n) symmetric, mean 0 matrices

v (o x;)
v Xi Omxm '

To apply the matrix Bernstein’s inequality (Theorem 5.4.1), we need to show that | X/|| < K’ for

N

>x,

i=1

ZN)E[XiXI ]

i=1

)
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Week 18: Tighter Bounds on Sub-Gaussian Matrices

have || X/|| < K as well since the characteristic equation for X/ is

M XT
det (X! — AI) = det(( ! Xﬁ)) — det(X2T — X X;) = 0,

so [|X][| = VX! Xi| < K.

Claim. Actually, we have || X/|| = ||X;||, hence || X]|| < K.

Proof. Observe that for any matrix A € R™*", as ||A|| = \/A1(AAT) = /A1 (AT A), we have

P 5= (AN -1E )

1Al

Hence, from matrix Bernstein’s inequality, for every ¢ > q0,

]P( ixi zqt> §2(m+n)exp<—t2/2),

— o2+ Kt/3
where 02 = ||Zfi1 E[(X])?]|. A quick calculation reveals that

xry2 = (O X\ (0 X1\ _(X[Xi 0
i X, 0 )\xi o 0 XX )
0% = max ( > ,

which completes the proof.
5.5 Application: community detection in sparse networks

hence we have
N

> E[X[X)]

i=1

N

> EXX]]

i=1

)

some K’, where we know that ||X;|| < K. However, it’s easy to see that since || X;|| = || X, ||, we

Plugging in X; =: A, we're done. ®

5.6 Application: covariance estimation for general distributions
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Chapter 6

Quadratic forms, symmetrization and
contraction

Week 19: Decoupling and Hanson-Wright Inequality
6.1 Decoupling

Show that for every convex function F': R — R, one has

E|F| Y (X, X;) || <E|F|4) ai (X, X)) ||,
4,51 1FE] 4,3
where (X/) is an independent copy of (X;).

(2

Answer. Omit.

Problem (Exercise 6.1.5). Prove the following alternative generalization of Theorem 6.1.1.

random variables. Show that, for every convex and increasing function F', one has

E |F Z XinUij S E|F|4 ZXzX]/U” 3
i itj ij
where (X!) is an independent copy of (X;).

(2

Answer. Omit.

6.2 Hanson-Wright Inequality

carefully.

Answer. Omit.

tions, without separating the diagonal part or decoupling.

65

Problem (Exercise 6.1.4). Prove the following generalization of Theorem 6.1.1. Let A = (a;;) be an
n X n matrix. Let Xi,..., X, be independent, mean zero random vectors in some Hilbert space.

(uij)?jzl be fixed vectors in some normed space. Let Xi,...,X, be independent, mean zero

Problem (Exercise 6.2.4). Complete the proof of Lemma 6.2.3. Replace X’ by ¢'; write all details

Problem (Exercise 6.2.5). Give an alternative proof of Hanson-Write inequality for normal distribu-
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Week 19: Decoupling and Hanson-Wright Inequality

Answer. Omit. ®

Problem (Exercise 6.2.6). Consider a mean zero, sub-gaussian random vector X in R™ with || X[y, <
K. Let B be an m x n matrix. Show that

c

E [exp(N[|BX|3)] < exp(CK?N?||B]|%) provided |A| < KB

To prove this bound, replace X with a Gaussian random vector g ~ N (0, I,,,) along the following
lines:
(a) Prove the comparison inequality
El[exp(A\|BX|3)] < Elexp(CK2X*|| BT g13)]
for every A € R.

(b) Check that
Elexp(\[| B g]13)] < exp(CX*||BII%)

provided that || < ¢/||B]|.

Answer. Omit. ®

Problem (Exercise 6.2.7). Let X1, ...,X,, be independent, mean zero, sub-gaussian random vectors
in R%. Let A = (a;j) be an n x n matrix. prove that for every ¢t > 0, we have

n t2 t
P i5(Xi, X;)| 2t | < 2exp| —cmi ’
> ai(Xi, X;) eXP( i <K4d||A|% K2||A||>)

ijc i)
where K = max; || X; ||y, -

Answer. Omit. ®

6.3 Concentration of anisotropic random vectors

Problem (Exercise 6.3.1). Let B be an m X n matrix and X be an isotropic random vector in R™.
Check that
E[IIBX|[3] = || Bll%-

Answer. Omit. ®

Problem (Exercise 6.3.3). Let D be a k x m matrix and B be an m X n matrix. Prove that
IDB|[r < [|D|||Bl|£-

Answer. Let B = (b1,...,by), then

IDBII% = > IDbill3 < Y IDIPIill3 = [IDI*IBII%,

i=1 i=1

where we use the fact that || A|| = /3=, . af; for any matrix A. ®

Problem (Exercise 6.3.4). Let E be a subspace of R™ of dimension d. Consider a random vector
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X =(Xy,...,X,) € R" with independent, mean zero, unit variance, sub-gaussian coordinates.

(a) Check that
(E[dist(X, E)2))Y? = vn — d.

(b) Prove that for any ¢ > 0, the distance nicely concentrates:
P (‘dist(x, E)—vn~— d( > t) < 2exp(—ct?/K*)
where K = max; || X; ||y, -

Answer. Omit. ®

Problem (Exercise 6.3.5). Let B be an m xn matrix, and let X be a mean zero, sub-gaussian random
vector in R™ with || Xy, < K. Prove that for any ¢ > 0, we have

ct?
P(|BX||2s > CK|B t) < —— .
(IBX]2 > CK1B1e +0) < exp( -5

Answer. Omit. ®

Problem (Exercise 6.3.6). Show that there exists a mean zero, isotropic, and sub-gaussian random
vector X in R"™ such that

1
P(|Xl2 = 0) = P(|| X]l2 > 14v/n) = 5.
In other words, || X||2 does not concentrate near /n.

Answer. Omit. ®

Week 20: The Symmetrization Trick

6.4 Symmetrization 13 Jul. 2024

Problem (Exercise 6.4.1). Let X be a random variable and £ be an independent symmetric Bernoulli
random variable.
(a) Check that £X and £|X| are symmetric random variables, and they have the same distribution.
(b) If X is symmetric, show that the distribution of £X and &|X| is the same as of z.

(¢) Let X’ be an independent copy of X. Check that X — X’ is symmetric.

Answer. (a) For any random variable X and a symmetric Bernoulli random variable &, we first
prove that £X 2 —£X,ie,P(EX >t) =P(—&X > t) for any t € R. Indeed, since
PEX >t|e=1+PEX>t[E=-1) P(X>8)+P(-X>1)

P(EX 2 1) = y - ;

while

p(ex 2= HEXZHE=DAPEX 2 =) PCX 20 +PX 20

This proves that both £X and &|X| are symmetric (by substituting X as |X|). Secondly, we
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show that £X 2 &1 X, ie, P(EX >1t) =P(&|X| > t) for any t € R. Again, we have

P(E|X| > £) = P(EX] 2t|§=1)+2]P’(£\X| 2t|§=-1)
_P(X[>1t) +P(-[X]| > 1)
_ P(|X| 2t|)2(20)IP(X20)+]P’(|X\ >t X <0)P(X <0)
LPEIX|Zt| X > O)IP(X22 0) JZFIP(—|X\ >t| X <0)P(X <0)
C (P(X>t)+P(-X >1)P(X >0) + (P(—X >t) + P(X >t))P(X <0)
_ PX 2 +P(=X 2 1)(P(X > 0)2+ P(X <0))
CP(X >t)+P(-X >1) i
> :

which is just P(6X > t), as we desired.

(b) Moreover, if X is symmetric, we want to show that £X 2 &1 X| 2 X. The first equation is
from (a); as for the second, we see that for any ¢ > 0,

P(X >t)+P(—X >1t)
2

P(X > 1) = P(—X > t) = —P(EX > 1)

from the proof of (a).
(c) Tt suffices to show that X — X’ 2 X’ — X, but this is trivial since (X, X") 2 (X', X).

®

Problem (Exercise 6.4.3). Where in this argument did we use the independence of the random
variables X;? Is mean zero assumption needed for both upper and lower bounds?

Answer. If X;’s are not independent, then {&;(X; — X/)}¥, might not have the same joint distri-
bution as {(X; — X/)}Y,. For the mean zero assumption, see Exercise 6.4.4. ®

Problem (Exercise 6.4.4). (a) Prove the following generalization of Symmetrization Lemma 6.4.2
for random vectors X; that do not necessarily have zero means:

N
E € X;
i=1

N N

> Xi— > E[X)]

=1 =1

E <2E

(b) Argue that there can not be any non-trivial reverse inequality.

Answer. (a) We see that using Lemma 6.1.2 again, we have

|

il) - (Xé—lE[Xﬂ))‘H

N N

ZXi = ZE[XJ

i=1 i=1

E

N
=E | |3 (X ~ Elxi)
1;1
<E |3 (X~ EIX]
i=1
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as E[X;] = E[X]], and using Exercise 6.4.1, we have

M| N
=E Z(Xz - X;) ]
LIli=1
M| N
=E || (X — X)) 1
Lili=1
M| N N
<E||D eaX X! e ] _
Lili=1

(b) Let N =1 and X; = AL for some A > 0. Then,
Efll Xy —E[Xi]|l2] =0

while
Efller X1ll2] = All1]l2

can be arbitrarily large as A — oo.

®

Problem (Exercise 6.4.5). Prove the following generalization of Symmetrization Lemma 6.4.2. Let
F: R, — R be an increasing, convex function. Show that the same inequalities in Lemma 6.4.2

hold if the norm ||-|| is replaced with F(||-||), namely

(el == (1

Answer. We see that for the lower bound, we have

N

Z SiXi

=1

< Zei Z) = F(; Ex Zn:Ei(XiX{)HD] (Ex:[e:X;] = 0)
<E|F|Ex zn:é‘i(Xi—Xz{) ])]

(Jensen’s inequality, F' increasing)

(
<7 G Zj: )] (et e
=E -F <; i >] (Exercise 6.4.1 (b) and (c))
<E _F <; i ZX’ )] (F increasing)
<E ;F (‘ Ej: > < ZX’ )] (F convex)
<
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On the other hand, for the upper bound, we also have

N

n

> x,

=1

E

<E _F (EX/ l ])] (Jensen’s inequality, F' increasing)

<E -F< EH:(XZ X7 )1 (Jensen’s inequality)
L i=1

=E F( D e X — X)) )] (Exercise 6.4.1 (b) and (c))
L i=1

<E —F< isiX ; )1 (F increasing)

<E - F< 261 i ) —-F (2 X )] (F' convex)

[

Problem (Exercise 6.4.6). Let X1,..., Xy be independent, mean zero random variables. Show that
their sum ), X; is sub-gaussian if and only if ), ¢; X; is sub-gaussian, and

N
Z SXi
i=1

®

N

Z Ez’Xi

=1

N

D X

=1

<cC
P2

c <

P2 P2

Answer. Consider F(x) := exp (m2/K2) — 1 for some K > 0, which is clearly convex. Hence, by

Exercise 6.4.5, if ||Y -, €:Xilly, < K, then
n n
F2K< ) Fox (2 Zq)@) K<Zsixi>] <1
i=1 i=1
)] <1,

implying |35, Xi|ly, < 2K. Conversely, if [|>.7 | X;i|ly, < K, then
thus IS0, £:Xillys < 2K. ®

n

>ox,

=1

(o)) o) e

Week 21: Random Matrices with Non-1.I.D. Entries

6.5 Random matrices with non-i.i.d. entries

6.6 Application: matrix completion

Week 22: Contraction Trick

6.7 Contraction Principle
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Problem (Exercise 6.7.2). Check that the function f defined in (6/16) is convex. For reference,
f: RN = R is defined as
N
_x [ ] |
i=1

E Qi€

Answer. To prove that for f: RY — R where

N
i=1

is convex, consider a,b € RY and some ) € (0, 1), we have

N
Z )\CLZ b]sixi ‘|

=1
N

implying that f is convex. ®

€iTi

fa+ (1 -

i€iTq iE€iTq

] = Af(a) + (1 =) f(0),

Problem (Exercise 6.7.3). Prove the following generalization of Theorem 6.7.1. Let X3,..., Xy be
independent, mean zero random vectors in a normed space, and let a = (ay,...,a,) € R"™. Then

N
]§4||a||M'El 1]
=1l

Answer. Let €;’s be independent Bernoulli’s random variables, then from the symmetrization and
Theorem 6.7.1 with conditioning on X;’s, we have

where the last inequality follows again from the symmetrization. ®

N

ZaiXi

i=1

E

N

>x

i=1

< 2E iCi

X; 1 <2|alloo - E

Problem (Exercise 6.7.5). Show that the factor y/log N in Lemma 6.7.4 is needed in general, and
is optimal. Thus, symmetrization with Gaussian random variables is generally weaker than sym-
metrization with symmetric Bernoullis.

Answer. Consider e;’s being i*? standard basis in RY, and consider X; := e;e; for all i > 1. We

N
El X ZE e
i=1 o

while given g; ~ N(0,1), we have

N
]E l
i=1

Ell(er;---,en)lle] =1,

N
ZgiX Zgi5iei
i=1

due to symmetry of g;’s and Exercise 2.5.10 and 2.5.11. ®

1 = E[ll(g1, - -, 9n3)lloc] < VIog N

o0

Problem (Exercise 6.7.6). Let F: R — R be a convex increasing function. Generalize the sym-
metrization and contraction results of this and previous section by replacing the norm [|-|| with
F(||-]) throughout.
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Answer. Omit. ®

Problem (Exercise 6.7.7). Consider a bounded subset 7" C R"™, and let ¢1,...,&, be independent
symmetric Bernoulli random variables. Let ¢;: R — R be contractions, i.e., Lipschitz functions

with ||¢i||Lip S 1. Then
e [ eine)| <2 [sp e ] |

teT teT

<E

To prove this result, do the following steps:

(a) First let n = 2. Consider a subset T'C R? and contraction ¢: R — R, and check that

sup(t1 + ¢(t2)) +sup(ts — ¢(t2)) < sup(ty +t2) + sup(ts — t2).
teT teT teT teT

(b) Use induction on n complete proof.
Answer. (a) Writing ¢ by ¢’ in the second term on both sides, which gives

sup(t1 + @(t2)) + sup (ty — ¢(t5)) = sup (t1+ (t2) +1; — $(t3))

teT teT tt'eT
< sup (t +t) + |t — th))
tt'eT
= sup (t1 + 1) + to — t5) = sup(t1 + t2) + sup () — t3),
tteT teT teT

where we use symmetry strategically.

(b) Firstly, we observe that conditioning on €1, ...,&,_1 gives
sup gi0i(t;) + endn(tn
[ 3 5 >]
== (suIT)Zquﬁz + on(tn +sup25lgbz i gf)n(tn))
te
< - | sup €z¢z +t +SUP z¢z z = sup 51¢z +5n n| s
(3o 5 o
where the inequality comes from (a) by considering the supremum over
n—1
T(n) = {(x7y)ER2xzzgngl(tl)’y:tna(tl) tn 17 )ET}
i=1

Explicitly, we get

Sungz(bz +5n¢n( n)‘| | €1: n—l] [ lSUPzgz¢z + entn

tGT teT

| €1: n—l] .

k—1 n
T®) = {(x,y) ER*:z = Zficﬁi(ti) + Z Eiti, Y = iy (t1, - tn—1,tn) € T}
1=1

i=k+1

By iterating this with conditioning on 1. , for every k and apply (a) on

we get the desired result.
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Problem (Exercise 6.7.8). Generalize Talagrand’s contraction principle for arbitrary Lipschitz func-
tions ¢;: R — R without restriction on their Lipschitz norms.

Answer. Look into the proof of Fxercise 6.7.7, we see that for general Lipschitz functions ¢;’s,

n
lsupzjslqbz <E lsupZEinSiHLipti] < max ||c;52 ILipE lsupZEl Z] ,
teT 5 <

teT
where the last inequality follows from Theorem 6.7.1, by noting that sup,c satisfies all the condi-
tions we need in Theorem 6.7.1. ®
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