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Abstract

This is the solution I write when organizing the reading group on Roman Vershynin’s High Dimen-
sional Probability [Ver24]. While we aim to solve all the exercises, occasionally we omit some due to
either 1.) simplicity; 2.) difficulty; or 3.) skipped section. Additionally, it may contain factual and/or
typographic errors.

The reading group started from Spring 2024, and the date on the cover page is the last updated time.
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Appetizer: using probability to cover a
geometric set

Week 1: Appetizer and Basic Inequalities
19 Jan. 2024Problem (Exercise 0.0.3). Check the following variance identities that we used in the proof of The-

orem 0.0.2.

(a) Let Z1, . . . , Zk be independent mean zero random vectors in Rn. Show that

E


∥∥∥∥∥∥
k∑
j=1

Zj

∥∥∥∥∥∥
2

2

 =

k∑
j=1

E[∥Zj∥22].

(b) Let Z be a random vector in Rn. Show that

E[∥Z − E[Z]∥22] = E[∥Z∥22]− ∥E[Z]∥22.

Answer. (a) If Z1, . . . , Zk are independent mean zero random vectors in Rn, then

E


∥∥∥∥∥∥
k∑
j=1

Zj

∥∥∥∥∥∥
2

2

 = E

 n∑
i=1

 k∑
j=1

(Zj)i

2
 =

n∑
i=1

E


 k∑
j=1

(Zj)i

2
 .

From the assumption, E [(Zj)i(Zj′)i] = E [(Zj)i]E [(Zj′)i] = 0, hence

n∑
i=1

E


 k∑
j=1

(Zj)i

2
 =

n∑
i=1

E

 k∑
j=1

(Zj)
2
i

 =

k∑
j=1

E

[
n∑
i=1

(Zj)
2
i

]
=

k∑
j=1

E
[
∥Zj∥22

]
,

proving the result.

(b) If Z is a random vector in Rn, then

E
[
∥Z − E [Z]∥22

]
= E

[
n∑
i=1

(Zi − E [Zi])
2

]

=

n∑
i=1

E
[
Z2
i − 2ZiE [Zi] + (E [Zi])

2
]

=

n∑
i=1

E
[
Z2
i

]
− 2

n∑
i=1

E [Zi]E [Zi] +

n∑
i=1

E [Zi]
2

= E
[
∥Z∥22

]
− ∥E [Z]∥22.

⊛
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Week 1: Appetizer and Basic Inequalities

Problem (Exercise 0.0.5). Prove the inequalities

( n
m

)m
≤
(
n

m

)
≤

m∑
k=0

(
n

k

)
≤
(en
m

)m
for all integers m ∈ [1, n].

Answer. Fix some m ∈ [1, n]. We first show (n/m)m ≤
(
n
m

)
. This is because

(n/m)m(
n
m

) =

m−1∏
j=0

(
n

m

m− j
n− j

)
≤ 1

as n−j
m−j ≥

n
m for all j. The second inequality

(
n
m

)
≤
∑m
k=0

(
n
k

)
is trivial since

(
n
k

)
≥ 1 for all k. The

last inequality is due to ∑m
k=0

(
n
k

)(
n
m

)m ≤
n∑
k=0

(
n

k

)(m
n

)k
=
(
1 +

m

n

)n
≤ em.

⊛

Problem (Exercise 0.0.6). Check that in Corollary 0.0.4,

(C + Cϵ2N)⌈1/ϵ
2⌉

suffice. Here C is a suitable absolute constant.

Answer. Omit. ⊛
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Chapter 1

Preliminaries on random variables

1.1 Basic quantities associated with random variables
No Exercise!

1.2 Some classical inequalities

Problem (Exercise 1.2.2). Prove the following extension of Lemma 1.2.1, which is valid for any
random variable X (not necessarily non-negative):

E[X] =

∫ ∞

0

P(X > t) dt−
∫ 0

−∞
P(X < t) dt.

Answer. SeparatingX into the plus and minus parts would do the job. Specifically, letX = X+−X−
where X+ = max(X, 0) and X− = max(−X, 0), both are non-negative. Then, we see that by
applying Lemma 1.2.1,

E [X] = E [X+]− E [X−]

=

∫ ∞

0

Pr(t < X+) dt−
∫ ∞

0

Pr(t < X−) dt

=

∫ ∞

0

Pr(X > t) dt−
∫ ∞

0

Pr(X < −t) dt

=

∫ ∞

0

Pr(X > t) dt−
∫ 0

−∞
Pr(X < t) dt.

⊛

Problem (Exercise 1.2.3). Let X be a random variable and p ∈ (0,∞). Show that

E[|X|p] =
∫ ∞

0

ptp−1P(|X| > t) dt

whenever the right-hand side is finite.

Answer. Since |X| is non-negative, from Lemma 1.2.1, we have

E [|X|p] =
∫ ∞

0

Pr(t < |X|p) dt =
∫ ∞

0

ptp−1 Pr(|X| > t) dt

where we let t← tp, hence dt← ptp−1dt. ⊛
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Week 2: Basic Inequalities and Limit Theorems

Week 2: Basic Inequalities and Limit Theorems
24 Jan. 2024Problem (Exercise 1.2.6). Deduce Chebyshev’s inequality by squaring both sides of the bound |X −

µ| ≥ t and applying Markov’s inequality.

Answer. From Markov’s inequality, for any t > 0,

Pr(|X − µ| ≥ t) = Pr(|X − µ|2 ≥ t2) ≤
E
[
|X − µ|2

]
t2

=
σ2

t2
.

⊛

1.3 Limit theorems

Problem (Exercise 1.3.3). Let X1, X2, . . . be a sequence of i.i.d. random variables with mean µ and
finite variance. Show that

E

[∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣
]
= O

(
1√
N

)
as N →∞.

Answer. We see that

E

[∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣
]
≤

√√√√√E

∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣
2
 =

√√√√Var

[
1

N

N∑
i=1

Xi

]
=

σ√
N
.

As σ <∞ is a constant, the rate is exactly O(1/
√
N). ⊛

CHAPTER 1. PRELIMINARIES ON RANDOM VARIABLES 6



Chapter 2

Concentration of sums of independent
random variables

Week 3: More Powerful Concentration Inequalities
2 Feb. 20242.1 Why concentration inequalities?

Problem (Exercise 2.1.4). Let g ∼ N (0, 1). Show that for all t ≥ 1, we have

E[g21g>t] = t · 1√
2π
e−t

2/2 + P(g > t) ≤
(
t− 1

t

)
1√
2π
e−t

2/2.

Answer. Denote the standard normal density as

Φ(x) =
1√
2π
e−x

2/2.

Since we have Φ′(x) = −xΦ(x), by integration by part,

E
[
g21g>t

]
=

∫ ∞

0

x21x>tΦ(x) dx

= −
∫ ∞

t

xΦ′(x) dx

= − xΦ(x)|∞t +

∫ ∞

t

Φ(x) dx

= t · 1√
2π
e−t

2/2 + P(g > t),

which gives the first equality. Furthermore, as t ≥ 1, we trivially have∫ ∞

t

Φ(x) dx ≤
∫ ∞

t

x

t
Φ(x) dx =

1

t

∫ ∞

t

−Φ′(x) dx =
Φ(t)

t
,

implying that

E
[
g21g>t

]
= t · 1√

2π
e−t

2/2 +

∫ ∞

t

Φ(x) dx ≤
(
t+

1

t

)
1√
2π
e−t

2/2,

which gives the second inequality. ⊛

2.2 Hoeffding’s inequality
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Week 3: More Powerful Concentration Inequalities

Problem (Exercise 2.2.3). Show that

cosh(x) ≤ exp
(
x2/2

)
for all x ∈ R.

Answer. Omit. ⊛

The next exercise is to prove Theorem 2.2.5 (Hoeffding’s inequality for general bounded random
variables), which we restate it for convenience.

Theorem 2.2.1 (Hoeffding’s inequality for general bounded random variables). Let X1, . . . , XN be
independent random variables. Assume that Xi ∈ [mi,Mi] for every i. Then, for any t > 0, we
have

P

(
N∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

Problem (Exercise 2.2.7). Prove the Hoeffding’s inequality for general bounded random variables,
possibly with some absolute constant instead of 2 in the tail.

Answer. Since raising both sides to p-th power doesn’t work since we’re now working with sum of
random variables, so we instead consider the MGF trick (also known as Crarmer-Chernoff method):

Lemma 2.2.1 (Crarmer-Chernoff method). Given a random variable X,

P(X − µ ≥ t) = P(eλ(X−µ) ≥ eλt) ≤ inf
λ>0

E
[
eλ(X−µ)]
eλt

.

Proof. This directly follows from the Markov’s inequality. ■

Hence, we see that

P

(
N∑
i=1

(Xi − E [Xi]) ≥ t

)
≤ inf
λ>0

e−λtE

[
exp

(
λ

N∑
i=1

(Xi − E [Xi])

)]

= inf
λ>0

e−λt
N∏
i=1

exp(λ(Xi − E [Xi])).

So now everything left is to bound E [exp(λ(Xi − E [Xi]))]. Before we proceed, we need one lemma.

Lemma 2.2.2. For any bounded random variable Z ∈ [a, b],

Var [Z] ≤ (b− a)2

4
.

Proof. Since

Var [Z] = Var

[
Z − a+ b

2

]
≤ E

[(
Z − a+ b

2

)2
]
≤ (b− a)2

4
.

■

Claim. Given X ∈ [a, b] such that E [X] = 0, for all λ ∈ R,

E
[
eλX

]
≤ exp

(
λ2

(b− a)2

8

)
.

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 8



Week 3: More Powerful Concentration Inequalities

Proof. We first define ψ(λ) = lnE
[
eλX

]
, and compute

ψ′(λ) =
E
[
XeλX

]
E [eλX ]

, ψ′′(λ) =
E
[
X2eλX

]
E [eλX ]

−

(
E
[
XeλX

]
E [eλX ]

)2

.

Now, observe that ψ′′ is the variance under the law of X re-weighted by eλX

E[eλX ]
, i.e., by a

change of measure, consider a new distribution Pλ (w.r.t. the original distribution P of X) as

dPλ(x) :=
eλX

EP [eλX ]
dP(x),

then

ψ′(λ) =
EP
[
XeλX

]
EP [eλX ]

=

∫
xeλx

EP [eλX ]
dP(x) = EPλ

[X]

and

ψ′′(λ) =
EP
[
X2eλX

]
EP [eλX ]

−

(
EP
[
XeλX

]
EP [eλX ]

)2

= EPλ

[
X2
]
− EPλ

[X]
2
= VarPλ

[X] .

From Lemma 2.2.2, since X under the new distribution Pλ is still bounded between a and
b,

ψ′′(λ) = VarPλ
[X] ≤ (b− a)2

4
.

Then by Taylor’s theorem, there exists some λ̃ ∈ [0, λ] such that

ψ(λ) = ψ(0) + ψ′(0)λ+
1

2
ψ′′(λ̃)λ2 =

1

2
ψ′′(λ̃)λ2

since ψ(0) = ψ′(0) = 0. By bounding ψ′′(λ̃)λ2/2, we finally have

lnE
[
eλX

]
= ψ(λ) ≤ 1

2
· (b− a)

2

4
λ2 = λ2

(b− a)2

8
,

raising both sides by e shows the desired result. ⊛

Say given Xi ∈ [mi,Mi] for every i, then Xi − E [Xi] ∈ [mi − E [Xi] ,Mi − E [Xi]] with mean 0
for every i. Then given any of the two bounds, for all λ ∈ R,

E
[
eλ(Xi−E[Xi])

]
≤ exp

(
λ2

(Mi −mi)
2

8

)
.

Then we simply recall that

P

(
N∑
i=1

(Xi − E [Xi]) ≥ t

)
= inf
λ>0

e−λt
N∏
i=1

exp(λ(Xi − E [Xi]))

≤ inf
λ>0

exp

(
−λt+

N∑
i=1

λ2
(Mi −mi)

2

8

)

= exp

(
− 4t2∑N

i=1(Mi −mi)2
+

2t2∑N
i=1(Mi −mi)2

)

= exp

(
− 2t2∑N

i=1(Mi −mi)2

)

since infimum is achieved at λ = 4t/(
∑N
i=1(Mi −mi)

2). ⊛

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 9



Week 3: More Powerful Concentration Inequalities

Problem (Exercise 2.2.8). Imagine we have an algorithm for solving some decision problem (e.g., is
a given number p a prime?). Suppose the algorithm makes a decision at random and returns the
correct answer with probability 1

2 + δ with some δ > 0, which is just a bit better than a random
guess. To improve the performance, we run the algorithm N times and take the majority vote.
Show that, for any ϵ ∈ (0, 1), the answer is correct with probability at least 1− ϵ, as long as

N ≥ 1

2δ2
ln

(
1

ϵ

)
.

Answer. Consider X1, . . . , XN
i.i.d.∼ Ber( 12 + δ), which is a series of indicators indicting whether the

random decision is correct or not. Note that E [Xi] =
1
2 + δ.

We see that by taking majority vote over N times, the algorithm makes a mistake if
∑N
i=1Xi ≤

N/2 (let’s not consider tie). This happens with probability

P

(
N∑
i=1

Xi ≤
N

2

)
= P

(
N∑
i=1

(Xi − E [Xi]) ≤ −Nδ

)
≤ exp

(
−2(Nδ)2

N

)
= e−2Nδ2

from Hoeffding’s inequality.a Requiring e−2Nδ2 ≤ ϵ is equivalent to requiring N ≥ 1
2δ2 ln(1/ϵ). ⊛

aNote that the sign is flipped. However, Hoeffding’s inequality still holds (why?).

Problem (Exercise 2.2.9). Suppose we want to estimate the mean µ of a random variable X from
a sample X1, . . . , XN drawn independently from the distribution of X. We want an ϵ-accurate
estimate, i.e., one that falls in the interval (µ− ϵ, µ+ ϵ).

(a) Show that a sample of size N = O(σ2/ϵ2) is sufficient to compute an ϵ-accurate estimate with
probability at least 3/4, where s;2 = Var[X].

(b) Show that a sample of size N = O(log
(
δ−1
)
σ2/ϵ2) is sufficient to compute an ϵ-accurate

estimate with probability at least 1− δ.

Answer. (a) Consider using the sample mean µ̂ = 1
N

∑N
i=1Xi as an estimator of µ. From the

Chebyshev’s inequality,

P (|µ̂− µ| > ϵ) ≤ σ2/N

ϵ2
.

By requiring σ2/(Nϵ2) ≤ 1/4, i.e., N ≥ 4σ2/ϵ2 = O(σ2/ϵ2), suffices.

(b) Consider gathering k estimator from the above procedure, i.e., we now have µ̂1, . . . , µ̂k such
that each are an ϵ-accurate mean estimator with probability at least 3/4. This requires
k · 4σ2/ϵ2 = O(kσ2/ϵ2) samples. We claim that the median µ̂ := median(µ̂1, . . . , µ̂k) is an
ϵ-accurate mean estimator with probability at least 1− δ for some k (depends on δ). Consider
a series of indicators Xi = 1|µ̂i−µ|>ϵ, indicating if µ̂i is not ϵ-accurate. Then Xi ∼ Ber(1/4).
Then, our median estimator µ̂ fails with probability

P (|µ̂− µ| > ϵ) = P

(
k∑
i=1

Xi >
k

2

)
= P

(
k∑
i=1

(Xi − E [Xi]) >
k

4

)

as E [Xi] = 1/4. From Hoeffding’s inequality, the above probability is bounded above by
exp
(
−2(k/4)2/k

)
, setting it to be less than δ we have

exp

(
−2(k/4)2

k

)
≤ δ ⇔ ln

(
1

δ

)
≥ k

8
⇔ k = O(ln

(
δ−1
)
),

i.e., the total number of samples required is O(kσ2/ϵ2) = O(ln
(
δ−1
)
σ2/ϵ2).

⊛

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 10



Week 3: More Powerful Concentration Inequalities

Problem (Exercise 2.2.10). Let X1, . . . , XN be non-negative independent random variables with
continuous distributions. Assume that the densities of Xi are uniformly bounded by 1.

(a) Show that the MGF of Xi satisfies

E[exp(−tXi)] ≤
1

t
for all t > 0.

(b) Deduce that, for any ϵ > 0, we have

P

(
N∑
i=1

Xi ≤ ϵN

)
≤ (eϵ)N .

Answer. (a) Since Xi’s are non-negative and the densities fXi
≤ 1 uniformly, for every t > 0,

E [exp(−tXi)] =

∫ ∞

0

e−txfXi(x) dx ≤
∫ ∞

0

e−tx dx = −1

t
e−tx

∣∣∣∣∞
0

=
1

t
.

(b) From Chernoff’s inequality, for any ϵ > 0,

P

(
N∑
i=1

Xi ≤ ϵN

)
= P

(
N∑
i=1

−Xi

ϵ
≥ −N

)

≤ inf
λ>0

eλNE

[
exp

(
λ

N∑
i=1

−Xi

ϵ

)]

= inf
λ>0

eλN
N∏
i=1

E
[
exp

(
−λXi

ϵ

)]

≤ inf
λ>0

eλN
N∏
i=1

ϵ

λ
Part (a) with t = λ/ϵ

= inf
λ>0

(
eλ
ϵ

λ

)N
= (eϵ)N

since the infimum is achieved when λ = 1.

⊛

2.3 Chernoff’s inequality

Problem (Exercise 2.3.2). Modify the proof of Theorem 2.3.1 to obtain the following bound on the
lower tail. For any t < µ , we have

P(SN ≤ t) ≤ e−µ
(eµ
t

)t
.

Answer. A direct modification is that considering for any λ > 0,

P(SN ≤ t) = P(−SN ≥ −t) = P(e−λSn ≥ e−λt) ≤ eλt
N∏
i=1

E [exp(−λXi)] .

A direct computation gives

E [exp(−λXi)] = e−λpi + (1− pi) = 1 + (e−λ − 1)pi ≤ exp
(
(e−λ − 1)pi

)
,
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Week 4: Chernoff’s Inequality and Degree Concentration

hence

P(SN ≤ t) ≤ eλt
N∏
i=1

exp
(
(e−λ − 1)pi

)
= eλt exp

(
(e−λ − 1)µ

)
= exp

(
λt+ (e−λ − 1)µ

)
.

Minimizing the right-hand side, we see that

t+ (−µe−λ) = 0⇔ t = µe−λ ⇔ λ = ln
µ

t

achieves the infimum. And since t < µ, λ > 0 as required, which gives

P(SN ≤ t) ≤ exp

(
t ln

µ

t
+

(
t

µ
− 1

)
µ

)
= exp

(
t ln

µ

t
+ t− µ

)
= e−µ

(eµ
t

)t
.

⊛

Problem (Exercise 2.3.3). Let X ∼ Pois(λ). Show that for any t > λ, we have

P(X ≥ t) ≤ e−λ
(
eλ

t

)t
.

Answer. From Chernoff’s inequality, for any θ > 0, we have

P(X ≥ t) ≤ e−θtE [exp(θX)] .

Then the Poisson moment can be calculated as

E [exp(θX)] =

∞∑
k=0

eθk · e−λλ
k

k!
= e−λ

∞∑
k=0

(eθλ)k

k!
= e−λ exp

(
eθλ
)
= exp

(
(eθ − 1)λ

)
,

hence

P(X ≥ t) ≤ e−θt exp
(
(eθ − 1)λ

)
=

(
λ

t

)t
exp(t− λ) = e−λ

(
eλ

t

)t
where we take the minimizing θ = ln(t/λ) > 0 as t > λ. ⊛

Alternatively, we can also solve Exercise 2.3.3 directly as follows.

Answer. Consider a series of independent Bernoulli random variables XN,i for a fixed N such that
the Poisson limit theorem applies to approximate X ∼ Pois(λ), i.e., as N → ∞, maxi≤N pN,i → 0
and λN := E [SN ]→ λ <∞, SN → Pois(λ). From Chernoff’s inequality, for any t > λN ,

P(SN > t) ≤ e−λN

(
eλN
t

)t
.

We then see that

P(X > t) = lim
N→∞

P(SN > t) ≤ lim
N→∞

e−λN

(
eλN
t

)t
= e−λ

(
eλ

t

)t
since λN → λ as N →∞. ⊛

Week 4: Chernoff’s Inequality and Degree Concentration
7 Feb. 2024Problem (Exercise 2.3.5). Show that, in the setting of Theorem 2.3.1, for δ ∈ (0, 1] we have

P(|SN − µ| ≥ δµ) ≤ 2e−cµδ
2

where c > 0 is an absolute constant.
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Week 4: Chernoff’s Inequality and Degree Concentration

Answer. From Chernoff’s inequality (right-tail), for t = (1 + δ)µ, we have

lnP(SN ≥ (1 + δ)µ) ≤ −µ+ (1 + δ)µ (1 + lnµ− ln(1 + δ)− lnµ)

= δµ− (1 + δ)µ(ln(1 + δ))

= µ(δ − (1 + δ) ln(1 + δ)).

A classic bound for ln(1 + δ) is the following.

Claim. For all x > 0,
2x

2 + x
≤ ln(1 + x).

Proof. As (1 + x/2)2 = 1 + x+ x2/4 ≥ 1 + x,

[log(1 + x)]′ =
1

1 + x
≥ 1

(1 + x/2)2
=

(
x

1 + x/2

)′

.

Note that log(1 + x) = x/(1 + x/2) = 0 at x = 0, so for all x > 0

log(1 + x) ≥ x

1 + x/2
.

⊛

Hence, as our δ ∈ (0, 1], we have

lnP(SN ≥ (1 + δ)µ) ≤ µ(δ − (1 + δ) ln(1 + δ)) ≤ µδ − µ(1 + δ)
2δ

2 + δ
= − µδ2

2 + δ
≤ −µδ

2

3
.

Similarly, from Chernoff’s inequality (left-tail), for t = (1− δ)µ, we have

lnP(SN ≤ (1− δ)µ) ≤ −µ+ (1− δ)µ(1 + lnµ− ln(1− δ)− lnµ)

= −δµ− (1− δ)µ ln(1− δ)
= µ(−δ − (1− δ) ln(1− δ)).

Another classic bound for ln(1− δ) is the following.

Claim. For all x ∈ [−1, 1),

−x− x2

2
≤ ln(1− x).

Proof. This one is even easier: since ln(1− x) = −x− x2/2− x3/3− . . .. ⊛

Hence, if δ ∈ (0, 1],a we have

lnP(SN ≤ (1− δ)µ) ≤ µ(−δ − (1− δ) ln(1− δ)) ≤ −µδ − µ(1− δ)
(
−δ − δ2

2

)
≤ −µδ

2

2
.

Combining two tails, we then see that

P(|SN − µ| > δµ) ≤ P(SN ≥ (1 + δ)µ) + P(SN ≤ (1− δ)µ)

≤ exp

(
−µδ

2

3

)
+ exp

(
−µδ

2

2

)
≤ 2 exp

(
−µδ

2

3

)
,

which almost complete the proof for c = 1/3. ⊛

aWhen δ = 1, lnP(SN ≤ (1− δ)µ) ≤ −µδ2

2
holds trivially since P(SN = 0) ≤ exp(−µ/2).
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Week 4: Chernoff’s Inequality and Degree Concentration

Problem (Exercise 2.3.6). Let X ∼ Pois(λ). Show that for t ∈ (0, λ], we have

P(|X − λ| ≥ t) ≤ 2 exp

(
−ct

2

λ

)
.

Answer. Fix some t =: δλ ∈ (0, λ] for some δ ∈ (0, 1] first. Consider a series of independent Bernoulli
random variables XN,i for a fixed N such that the Poisson limit theorem applies to approximate
X ∼ Pois(λ), i.e., as N →∞, maxi≤N pN,i → 0 and λN := E [SN ]→ λ <∞, SN → Pois(λ). From
multiplicative form of Chernoff’s inequality, for tN := δλN ,

P(|SN − λN | ≥ tN = δλN ) ≤ 2 exp

(
−ct

2
N

λN

)
.

It then follows that from the Poisson limit theorem,

P(|X − λ| ≥ t) = lim
N→∞

P(|SN − λN | ≥ tN ) = lim
N→∞

2 exp

(
−ct

2
N

λN

)
= 2 exp

(
−ct

2

λ

)
since tN = δλN → δλ = t. ⊛

Problem (Exercise 2.3.8). Let X ∼ Pois(λ). Show that, as λ→∞, we have

X − λ√
λ

D→ N (0, 1).

Answer. Since X :=
∑λ
i=1Xi ∼ Pois(λ) if Xi

i.i.d.∼ Pois(1) for all i, from Lindeberg-Lévy central
limit theorem, we have

X − E [X]√
Var [X]

=
X − λ√

λ

d→ N (0, 1)

as E [Xi] = Var [Xi] = 1. ⊛

2.4 Application: degrees of random graphs

Problem (Exercise 2.4.2). Consider a random graphG ∼ G(n, p) with expected degrees d = O(log n).
Show that with high probability (say, 0.9), all vertices of G have degrees O(log n).

Answer. Since d = O(log n), there exists an absolute constant M > 0 such that d = (n − 1)p ≤
M log n for all large enough n. Now, consider some C > 0 such that eM/C =: α < 1. From
Chernoff’s inequality,

P(di ≥ C log n) ≤ e−d
(

ed

C log n

)C logn

≤ e−d
(
eM

C

)C logn

≤ αC logn.

Hence, from union bound, we have

P(∀i : di ≤ C log n) ≥ 1− nαC logn,

which can be arbitrarily close to 1 as C is sufficiently large. ⊛

Problem (Exercise 2.4.3). Consider a random graph G ∼ G(n, p) with expected degrees d = O(1).
Show that with high probability (say, 0.9), all vertices of G have degrees

O

(
log n

log log n

)
.
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Week 4: Chernoff’s Inequality and Degree Concentration

Answer. Since now d = (n − 1)p ≤ M for some absolute constant M > 0 for all large n, from
Chernoff’s inequality,

P
(
di ≥ C

log n

log log n

)
≤ e−d

(
ed

C logn
log logn

)C log n
log log n

≤ e−d
(
eM log log n

C log n

)C log n
log log n

for some C > 0. This implies that

P
(
∀i : di ≤ C

log n

log log n

)
≥ 1− ne−d

(
eM log log n

C log n

)C log n
log log n

.

Now, considering C =M , we have

ne−d
(
eM log log n

C log n

)C log n
log log n

≤ ne−d
(
e log log n

log n

)M log n
log log n

.

Taking logarithm, we observe that

log n− d+M
log n

log log n
(1 + log log log n− log log n)

= (1−M) log n− d+M
log n

log log n
(1 + log log log n)

=

[
1−M

(
1 +

1

log logn
+

log log log n

log log n

)]
log n− d→ −∞

as n→∞, i.e.,

ne−d
(
eM log log n

C log n

)C log n
log log n

→ 0,

which is what we want to prove. ⊛

Problem (Exercise 2.4.4). Consider a random graph G ∼ G(n, p) with expected degrees d = o(log n).
Show that with high probability, (say, 0.9), G has a vertex with degree 10d.

Answer. Omit. ⊛

Problem (Exercise 2.4.5). Consider a random graph G ∼ G(n, p) with expected degrees d = O(1).
Show that with high probability, (say, 0.9), G has a vertex with degree

Ω

(
log n

log log n

)
.

Answer. Firstly, note that the question is ill-defined in the sense that if d = (n− 1)p = O(1), it can
be d = 0 (with p = 0), which is impossible to prove the claim. Hence, consider the non-degenerate
case, i.e., d = Θ(1).

We want to prove that there exists some absolute constant C > 0 such that with high probability
G has a vertex with degree at least C log n/ log log n. First, consider separate the graph randomly
into two parts A,B, each of size n/2. It’s then easy to see by dropping every inner edge in A and
B, the graph becomes bipartite such that now A and B forms independent sets. Consider working
on this new graph (with degree denoted as d′), we have

P(d′i = k) =

(
n/2

k

)(
d

n− 1

)k (
1− d

n− 1

)n/2−k
≥
( n
2k

)k
· d

k

nk
· e−d

= dkn−k
( n
2k

)k
e−d =

(
d

2k

)k
e−d.
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Let k = C log n/ log log n such that d/2k > 1/ log n for large enough n,a we have

P
(
d′i =

C log n

log log n

)
≥ e−d

(
d

2k

)k
≥ e−d(log n)−k = exp(−d− k log logn)

= exp(−d− C log n) = e−dn−C .

Let this probability be q, and focus on A. We can then define Xi = 1d′i=k
for i ∈ A, and note

that Xi are all independent as A being an independent set. Then, the number of vertices in A,
denoted asX, with degree exactly k follows Bin(n/2, q) withX =

∑
i∈AXi and mean nq/2, variance

nq(1− q)/2. From Chebyshev’s inequality,

P(X = 0) ≤ P(|X − µ| ≥ µ) ≤ σ2

µ2
=
nq(1− q)/2
(nq/2)2

= 2
1− q
nq

≤ 2

nq
≤ 2

ne−dn−C
=

2ed

n1−C
.

Now, by setting C < 1, say 1/2, then

P(X = 0) ≤ 2edn−1/2 → 0

as n → ∞, which means P(X ≥ 1) → 1, i.e., with probability 1, there are at least one point with
degree log n/2 log log n. Now, by considering the deleting edges in the beginning, we conclude that
there will be a vertex with degree

Ω

(
log n

log log n

)
with overwhelming probability. ⊛

aSince this is equivalent as k < d logn/2. As k has a log logn → ∞ factor in the denominator, the claim holds.

Week 5: Sub-Gaussian Random Variables
16 Feb. 20242.5 Sub-gaussian distributions

Problem (Exercise 2.5.1). Show that for each p ≥ 1, the random variable X ∼ N (0, 1) satisfies

∥X∥Lp = (E[|X|p])1/p =
√
2

(
Γ((1 + p)/2)

Γ(1/2)

)1/p

.

Deduce that
∥X∥Lp = O(

√
p) as p→∞.

Answer. We see that for p ≥ 1, we have

(E[|X|p])1/p =
(∫ ∞

−∞
|x|p · 1√

2π
e−x

2/2 dx

)1/p

=

(
2

∫ ∞

0

|x|p · 1√
2π
e−x

2/2 dx

)1/p

from the symmetry around 0. Next, consider a change of variable x2 =: u, we have

=

(
2

1√
2π

∫ ∞

0

up/2e−u/2
1

2
√
u
du

)1/p

=

(
1√
2π

∫ ∞

0

u(p−1)/2e−u/2 du

)1/p

with another change of variable u/2 =: t,

=

(
1√
2π

∫ ∞

0

(2t)(p−1)/2e−t2 dt

)1/p

=

(
1√
2π
· 2(p−1)/2 · 2

∫ ∞

0

t(p−1)/2e−t dt

)1/p

=

(
1√
2π

2(p+1)/2Γ

(
p+ 1

2

))1/p

=

(
1√
2

√
2
p+1Γ((p+ 1)/2)

Γ(1/2)

)1/p

as Γ(1/2) =
√
π, we finally have

=
√
2

(
Γ((p+ 1)/2)

Γ(1/2)

)1/p

,
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where we recall that
Γ(z) =

∫ ∞

0

tz−1e−t dt.

To show that ∥X∥Lp = O(
√
p) as p→∞, we first note the following.

Lemma 2.5.1. We have that for p ≥ 1,

Γ

(
1 + p

2

)
=

{
2−p/2

√
π(p− 1)!!, if p is even;

2−(p−1)/2(p− 1)!!, if p is odd.

Proof. Consider the Legendre duplication formula, i.e.,

Γ(z)Γ(z + 1/2) = 21−2z
√
πΓ(2z).

We see that for p being even, (1 + p)/2 = p/2 + 1/2, by letting z := p/2 ∈ N,

Γ((1 + p)/2) =
21−p
√
πΓ(p)

Γ(p/2)
= 21−p

√
π

(p− 1)!

(p/2− 1)!

= 21−p
√
π

(p− 1)!

(1/2)p/2−1(p− 2)!!
= 2−p/2

√
π(p− 1)!!.

For odd p, recall the identity Γ(z + 1) = zΓ(z). We then have

Γ((1 + p)/2) =
p− 1

2
· Γ((p− 1)/2)

=
(p− 1)(p− 3)

22
· Γ((p− 3)/2)

...

=
(p− 1)(p− 3) . . . (p− (p− 2))

2(p−1)/2
· Γ(1) 2 = (p− (p− 2))

=2−(p−1)/2(p− 1)(p− 3) . . . (2)

=2−(p−1)/2(p− 1)!!.

■

We then see that as p→∞,

∥X∥Lp =
√
2

(
Γ((1 + p)/2)

Γ(1/2)

)1/p

≲ ((p− 1)!!)
1/p

= O(
√
p!

1/p
) = O(

√
p).

⊛

Problem (Exercise 2.5.4). Show that the condition E[X] = 0 is necessary for property v to hold.

Answer. Since if E[exp(λX)] ≤ exp
(
K2

5λ
2
)

for all λ ∈ R, we see that from Jensen’s inequality,

exp(E[λX]) ≤ E[exp(λX)] ≤ exp
(
K2

5λ
2
)
,

i.e.,
λE[X] ≤ K2

5λ
2.

Since this holds for every λ ∈ R, if λ > 0, E[X] ≤ K2
5λ; on the other hand, if λ < 0, E[X] ≥ K2

5λ.
In either case, as λ→ 0 (from both sides, respectively), 0 ≤ E[X] ≤ 0, hence E[X] = 0. ⊛

Problem (Exercise 2.5.5). (a) Show that if X ∼ N (0, 1), the function λ 7→ E[exp
(
λ2X2

)
] is only

finite in some bounded neighborhood of zero.

CHAPTER 2. CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES 17



Week 5: Sub-Gaussian Random Variables

(b) Suppose that some random variable X satisfies E[exp
(
λ2X2

)
] ≤ exp

(
Kλ2

)
for all λ ∈ R and

some constant K. Show that X is a bounded random variable, i.e., ∥X∥∞ <∞.

Answer. (a) If X ∼ N (0, 1), we see that

E[exp
(
λ2X2

)
] =

∫ ∞

−∞
exp
(
λ2x2

) 1√
2π
e−x

2/2 dx =
1√
2π

∫ ∞

−∞
exp
(
(λ2 − 1/2)x2

)
dx.

It’s obvious that if λ2 − 1/2 ≥ 0, the above integral doesn’t converge simply because eϵx
2

for
any ϵ ≥ 0 is unbounded. On the other hand, if λ2 − 1/2 < 0, then this is just a (scaled)
Gaussian integral, which converges. Hence, this function is only finite in λ ∈ (−1/

√
2, 1/
√
2).

(b) Simply because that for any t, we have that for any λ,

P(|X| > t) ≤
E[exp

(
λ2X2

)
]

exp(λ2t2)
≤

exp
(
Kλ2

)
exp(λ2t2)

= exp
(
λ2(K − t2)

)
.

Now, let’s pick t >
√
K (as K being a constant, t can be any constant greater than t >

√
K),

so λ2(K − t2) < 0. By letting λ→∞, we see that P(|X| > t) = 0, i.e., P(|X| ≤ t) = 1. Since
we’re in one-dimensional, |X| = ∥X∥∞, hence we’re done.

⊛

Problem (Exercise 2.5.7). Check that ∥·∥ψ2 is indeed a norm on the space of sub-gaussian random
variables.

Answer. It’s clear that ∥X∥ψ2
= 0 if and only if X = 0. Also, for any λ > 0, ∥λX∥ψ2

= λ∥X∥ψ2

is obvious. Hence, we only need to verify triangle inequality, i.e., for any sub-gaussian random
variables X and Y ,

∥X + Y ∥ψ2
≤ ∥X∥ψ2

+ ∥Y ∥ψ2
.

Firstly, we observe that since exp(x) and x2 are both convex (hence their composition),

exp

((
X + Y

∥X∥ψ2 + ∥Y ∥ψ2

)2
)
≤ ∥X∥ψ2

∥X∥ψ2 + ∥Y ∥ψ2

exp
(
(X/∥X∥ψ2

)2
)

+
∥Y ∥ψ2

∥X∥ψ2
+ ∥Y ∥ψ2

exp
(
(Y/∥Y ∥ψ2

)2
)
.

Then, by taking expectation on both sides,

E

[
exp

((
X + Y

∥X∥ψ2
+ ∥Y ∥ψ2

)2
)]
≤ 2

∥X∥ψ2

∥X∥ψ2
+ ∥Y ∥ψ2

+ 2
∥Y ∥ψ2

∥X∥ψ2
+ ∥Y ∥ψ2

= 2.

Now, we see that from the definition of ∥X + Y ∥ψ2 and t := ∥X∥ψ2 + ∥Y ∥ψ2 , the above implies

∥X + Y ∥ψ2
≤ ∥X∥ψ2

+ ∥Y ∥ψ2
,

hence the triangle inequality is verified. ⊛

Problem (Exercise 2.5.9). Check that Poisson, exponential, Pareto and Cauchy distributions are not
sub-gaussian.

Answer. Omit. ⊛

Problem (Exercise 2.5.10). Let X1, X2, . . ., be a sequence of sub-gaussian random variables, which
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are not necessarily independent. Show that

E
[
max
i

|Xi|√
1 + log i

]
≤ CK,

where K = maxi∥Xi∥ψ2 . Deduce that for every N ≥ 2 we have

E
[
max
i≤N
|Xi|

]
≤ CK

√
logN.

Answer. Let Yi := |Xi|/K
√
1 + log i (which is always positive) for all i ≥ 1. Then for all t ≥ 0,

P(Yi ≥ t) = P
(

|Xi|
K
√
1 + log i

≥ t
)

= P
(
|Xi| ≥ tK

√
1 + log i

)
≤ 2 exp

(
−ct

2K2(1 + log i)

∥Xi∥2ψ2

)
≤ 2 exp

(
−ct2(1 + log i)

)
= 2(ei)−ct

2

as K := maxi∥Xi∥2ψ2
. Then, our goal now is to show that E[maxi Yi] ≤ C for some absolute constant

C. Consider t0 :=
√

1/c, then we have

E
[
max
i
Yi

]
=

∫ ∞

0

P
(
max
i
Yi ≥ t

)
dt

≤
∫ t0

0

P
(
max
i
Yi ≥ t

)
dt+

∫ ∞

t0

∞∑
i=1

P(Yi ≥ t) dt union bound

≤ t0 +
∫ ∞

t0

∞∑
i=1

2(ei)−ct
2

dt

≤
√
1/c+ 2

∫ ∞

t0

e−ct
2

∞∑
i=1

i−2 dt

≤
√
1/c+ 2 · π

2

6

∫ ∞

0

e−ct
2

dt =
√

1/c+
π2

3
·
√
π

2
√
c
=

1 + π5/2

6√
c

=: C.

Finally, for every N ≥ 2,

E
[
max
i≤N

|Xi|√
1 + logN

]
≤ E

[
max
i≤N

|Xi|√
1 + log i

]
≤ E

[
max
i

|Xi|√
1 + log i

]
≤ CK,

i.e., E[maxi≤N |Xi|] ≤ CK
√
1 + logN ≤ CK

√
2 logN for all N ≥ 2. By letting C ′ :=

√
2C,

E
[
max
i≤N
|Xi|

]
≤ C ′K

√
logN,

which is exactly what we want. ⊛

Problem (Exercise 2.5.11). Show that the bound in Exercise 2.5.10 is sharp. Let X1, X2, . . . , XN be
independent N (0, 1) random variables. Prove that

E
[
max
i≤N

Xi

]
≥ c
√

logN.

Answer. Again, let’s first write

E
[
max
i≤N

Xi

]
=

∫ ∞

0

P
(
max
i≤N

Xi ≥ t
)

dt,
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and observe that for any t ≥ 0,

P(Xi ≥ t) =
∫ ∞

t

1√
2π

exp

(
−x

2

2

)
dx

=
1√
2π

∫ ∞

0

exp

(
− (x+ t)2

2

)
dx x← x+ t

≥ 1√
2π

∫ 1

0

exp

(
− (x+ t)2

2

)
dx

≥ Ce−t
2

for some constant C > 0. Since Xi’s are i.i.d.,

P
(
max
i≤N

Xi ≥ t
)

= 1−
(
P(X1 < t)

)N
= 1−

(
1− P(X1 ≥ t)

)N
,

so

E
[
max
i≤N

Xi

]
=

∫ ∞

0

1−
(
1− P(X1 ≥ t)

)N
dt

≥
∫ ∞

0

1− (1− Ce−t
2

)N dt

=
√
logN

∫ ∞

0

1−
(
1− C

Nu2

)N
du. t =:

√
logNu

Finally, as the final integral can be further bounded below by some absolute constant c depending
only on C, hence we obtain the desired result. ⊛

Week 6: Hoeffding’s and Khintchine’s Inequalities
21 Feb. 20242.6 General Hoeffding’s and Khintchine’s inequalities

Problem (Exercise 2.6.4). Deduce Hoeffding’s inequality for bounded random variables (Theorem
2.2.6) from Theorem 2.6.3, possibly with some absolute constant instead of 2 in the exponent.

Answer. Omit. ⊛

Problem (Exercise 2.6.5). Let X1, . . . , XN be independent sub-gaussian random variables with zero
means and unit variances, and let a = (a1, . . . , aN ) ∈ RN . Prove that for every p ∈ [2,∞) we have(

N∑
i=1

a2i

)1/2

≤

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≤ CK√p

(
N∑
i=1

a2i

)1/2

where K = maxi∥Xi∥ψ2
and C is an absolute constant.

Answer. From Jensen’s inequality,

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≥

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
L2

=

E
( N∑

i=1

aiXi

)2
1/2

.

Then, observe that since E[Xi] = 0,

Var

[
N∑
i=1

aiXi

]
= E

( N∑
i=1

aiXi

)2
−(E [ N∑

i=1

aiXi

])2

= E

( N∑
i=1

aiXi

)2
 ,
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and at the same time, as Var[Xi] = 1, Var
[∑N

i=1 aiXi

]
=
∑N
i=1 a

2
i Var[Xi] =

∑N
i=1 a

2
i = ∥a∥2,

hence we have ∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≥
[
∥a∥2

]1/2
= ∥a∥,

which is the desired lower-bound. For the upper-bound, we see that∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
2

Lp

≤ C2√p2
∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
2

ψ2

≤ C ′p

N∑
i=1

∥aiXi∥2ψ2
= C ′′p

N∑
i=1

a2i ∥Xi∥2ψ2 ≤ C ′′K2p∥a∥2,

where C,C ′, C ′′ are all absolute constant (might depend on each other). Taking square root on
both sides, we obtain the desired result. ⊛

Problem (Exercise 2.6.6). Show that in the setting of Exercise 2.6.5, we have

c(K)

(
N∑
i=1

a2i

)1/2

≤

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
L1

≤

(
N∑
i=1

a2i

)1/2

.

Here Kgmaxi∥Xi∥ψ2
and c(K) > 0 is a quantity which may depend only on K.

Answer. Skip, as this is a special case of Exercise 2.6.7. ⊛

Problem (Exercise 2.6.7). State and prove a version of Khintchine’s inequality for p ∈ (0, 2).

Answer. The Khintchine’s inequality for p ∈ (0, 2) can be stated as

c(K, p)

(
N∑
i=1

a2i

)1/2

≤

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≤

(
N∑
i=1

a2i

)1/2

.

Here K = maxi∥Xi∥ψ2 and c(K, p) > 0 is a quantity which depends on K and p. We first recall the
generalized Hölder inequality.

Theorem 2.6.1 (Generalized Hölder inequality). For 1/p+ 1/q = 1/r where p, q ∈ (0,∞],

∥fg∥Lr ≤ ∥f∥Lp∥g∥Lq .

Proof. The classical case is when r = 1. By considering |f |r ∈ Lp/r and |g|r ∈ Lq/r, r/p+r/q =
1. Then the standard Hölder inequality implies

∥fg∥rLr =

∫
|fg|r = ∥|fg|r∥L1 ≤ ∥|f |r∥Lp/r∥|g|r∥Lq/r

=

(∫
(|f |r)p/r

)r/p(∫
(|g|r)q/r

)r/q
= ∥f∥rLp∥g∥rLq ,

implying the result. ■

Now, take r = 2, p = q = 4, we get

∥XY ∥L2 ≤ ∥X∥L4∥Y ∥L4 =
(
E[|X|4]

)1/4 (E[|Y |4])1/4 .
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Let X = |Z|p/4 and Y = |Z|(4−p)/4, we see that

∥Z∥L2 ≤ (E[|Z|p])1/4
(
E[|Z|4−p]

)1/4
= ∥Z∥p/4Lp ∥Z∥(4−p)/4L4−p ,

implying

∥Z∥Lp ≥

(
∥Z∥L2

∥Z∥(4−p)/4L4−p

)4/p

=
∥Z∥4/pL2

∥Z∥(4−p)/pL4−p

.

Finally, by letting Z =
∑N
i=1 aiXi,

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≥

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
4/p

L2

/∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
(4−p)/p

L4−p

.

Observe that from Exercise 2.6.5:

• ∥
∑N
i=1 aiXi∥L2 = ∥a∥;

• ∥
∑N
i=1 aiXi∥L4−p ≤ CK

√
4− p∥a∥ (as 4− p > 2 from p ∈ (0, 2)),

hence ∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≥ ∥a∥
4/p/(

CK
√
4− p∥a∥

)(4−p)/p = (CK√4− p
)− p

4−p ∥a∥.

Hence, we see that by letting c(K, p) := (CK
√
4− p)−p/(4−p), the lower-bound is established. The

upper-bound is essentially the same as Exercise 2.6.5 (in there we use have the lower-bound since
p ≥ 2), where this time we use ∥·∥Lp ≤ ∥·∥L2 since p ≤ 2.a Hence, we’re done. ⊛

aNote that although ∥·∥Lp for p ∈ [0, 1) is not a norm, this inequality still holds.

Remark. Exercise 2.6.6 is just a special case with c(K, 1) = (CK
√
3)−1/3.

Problem (Exercise 2.6.9). Show that unlike (2.19), the centering inequality in Lemma 2.6.8 does not
hold with C = 1.

Answer. Consider the random variable X :=
√
log 2 · ϵ where ϵ is a Rademacher random variable

with parameter p, i.e.,

X =

{√
log 2, w.p. p;

−
√
log 2, w.p. 1− p.

Since E[exp
(
X2
)
] = 2, we know that ∥X∥ψ2 is exactly 1. We now want to show that ∥X−E[X]∥ψ2 >

∥X∥ψ2
= 1 for some p. It amounts to show that E[exp

(
|X − E[X]|2

)
] > 2. Now, we know that

E[X] =
√
log 2(2p− 1), and hence

X − E[X] =

{
2(1− p)

√
log 2, w.p. p;

−2p
√

log 2, w.p. 1− p.

Hence, we have that
E[exp

(
|X − E[X]|2

)
] = p · 24(1−p)

2

+ (1− p)24p
2

.

A quick numerical optimization gives the desired result with p ≈ 0.236. ⊛

Week 7: Sub-Exponential Random Variables
1 Mar. 20242.7 Sub-exponential distributions
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Week 7: Sub-Exponential Random Variables

Problem (Exercise 2.7.2). Prove the equivalence of properties a-d in Proposition 2.7.1 by modifying
the proof of Proposition 2.5.2.

Answer. This is a special case of Exercise 2.7.3 with α = 1. ⊛

Problem (Exercise 2.7.3). More generally, consider the class of distributions whose tail decay is of
the type exp(−ctα) or faster. Here α = 2 corresponds to sub-gaussian distributions, and α = 1, to
sub-exponential. State and prove a version of Proposition 2.7.1 for such distributions.

Answer. The generalized version of Proposition 2.7.1 is known to be the so-called Sub-Weibull
distributions [Vla+20]: Let X be a random variable. Then the following properties are equivalent;
the parameters Ki > 0 appearing in these properties differ from each other by at most an absolute
constant factor.

(a) The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp(−tα/K1) for all t ≥ 0.

(b) The moments of X satisfy

∥X∥Lp = (E[|X|p])1/p ≤ K2p
1/α for all p ≥ 1.

(c) The MGF of |X| satisfies

E[exp(λα|X|α)] ≤ exp(λαKα
3 ) for all λ such that 0 ≤ λ ≤ 1

K3
.

(d) The MGF of |X| is bounded at some point, namely

E[exp(|X|α/Kα
4 )] ≤ 2.

Claim. (a) ⇒ (b)

Proof. Without loss of generality, let K1 = 1. Then, we have

∥X∥pLp =

∫ ∞

0

P(|X|p ≥ t) dt

=

∫ ∞

0

pup−1P(|X| ≥ u) du u := t1/p

≤ 2p

∫ ∞

0

up−1e−u
α

du from our assumption

=
2p

α

∫ ∞

0

tp/α−1e−t dt t := uα

= 2
p

α
Γ(p/α) = 2Γ(p/α+ 1) ≲ (p/α+ 1)p/α+1

for some constant C from Stirling’s approximation. Hence,

∥X∥Lp ≲
( p
α
+ 1
) 1

α+ 1
p

=
( p
α
+ 1
) 1

α
( p
α
+ 1
) 1

p

≲ p1/α

as we desired. ⊛

Claim. (b) ⇒ (c)
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Proof. Firstly, from Taylor’s expansion, we have

E[exp(λα|X|α)] = 1 +

∞∑
k=1

λαkE[|X|αk]
k!

≤ 1 +

∞∑
k=1

λαkE[|X|αk]
k!

.

From (b), when αk ≥ 1, we have E[|X|αk] ≤ (K2(αk)
1/α)αk = Kαk

2 (αk)k. On the other hand,
for any given α > 0, there are only finitely many k ≥ 1 such that αk < 1. Hence, there exists
some K̃2 such that

E[|X|αk] ≤ K̃αk
2 (αk)k

for all k ≥ 1. With k! ≥ (k/e)k from Stirling’s approximation, we further have

1 +

∞∑
k=1

λαkE[|X|αk]
k!

≤ 1 +

∞∑
k=1

λαkK̃αk
2 (αk)k

(k/e)k
= 1 +

∞∑
k=1

λαkK̃αk
2 (αe)k = 1 +

∞∑
k=1

(K̃α
2 λ

ααe)k.

Observe that if 0 < K̃α
2 λ

ααe < 1, we then have

E[exp(λα|X|α)] ≤ 1 +

∞∑
k=1

(K̃α
2 λ

ααe)k =
1

1− K̃α
2 λ

ααe
.

As (1− x)e2x ≥ 1 for all x ∈ [0, 1/2], the above is further less than

exp
(
2(K̃2λ)

ααe
)
= exp

([
(2αe)1/αK̃2

]α
λα
)
.

By letting K3 := (2αe)1/αK̃2, we have the desired result whenever K̃α
2 λ

ααe < 1, or equiva-
lently,

0 < λα <
1

K̃α
2 αe

⇔ 0 < λ <
1

K̃2(αe)1/α
.

Hence, if 0 < λ ≤ 1

K̃2(2αe)1/α
= 1

K3
, the above is satisfied. ⊛

Claim. (c) ⇒ (d)

Proof. Assuming (c) holds, then (d) is obtained by taking λ := 1/K4 whereK4 := K3(ln 2)
−1/α.

In this case, λ = 1/K3 · (ln 2)1/α, hence

E[exp(λα|X|α)] = E[exp(|X|α/Kα
4 )] ≤ exp(λαKα

3 )

for all 0 ≤ λ = 1/K4 ≤ 1/K3 from (d) gives

E[exp(|X|α/Kα
4 )] ≤ exp

(
ln 2 · 1

Kα
3

·Kα
3

)
= 2.

⊛

Claim. (d) ⇒ (a)

Proof. Let K4 = 1 without loss of generality. Then, we have

P(|X| ≥ t) = P(exp(|X|α) ≥ exp(tα)) ≤ E[exp(|X|α)]
exp(tα)

≤ 2 exp(−tα),

hence K1 := 1 proves the result. ⊛

⊛
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Problem (Exercise 2.7.4). Argue that the bound in property c can not be extended for all λ such
that |λ| ≤ 1/K3.

Answer. It’s easy to see that in the proof of Exercise 2.7.3, when we prove (b) ⇒ (c), the condition
for λ essentially comes from:

• whether 1 +
∑∞
k=1(K̃

α
2 λ

ααe)k = 1 +
∑∞
k=1(K̃2λe)

k as α = 1 converges; and

• the numerical inequality (1− x)e2x ≥ 1 for x ∈ [0, 1/2] such that x := K̃2λe.

For the first condition, we only need |K̃2λe| < 1, hence we don’t need positivity for λ at first;
however, the second condition indeed requires λ ≥ 0, and it’s impossible to remove as this is tight.

⊛

Problem (Exercise 2.7.10). Prove an analog of the Centering Lemma 2.6.8 for sub-exponential ran-
dom variables X:

∥X − E[X]∥ψ1 ≤ C∥X∥ψ1 .

Answer. Since ∥·∥ψ2
is a norm, we have ∥X − E[X]∥ψ1

≤ ∥X∥ψ1
+ ∥E[X]∥ψ1

such that

∥E[X]∥ψ1
≲ |E[X]| ∥a∥ψ1

= inft>0{E[e|a|/t] ≤ 2} ≲ |a|
≤ E[|X|] Jensen’s inequality
= ∥X∥L1 ≲ ∥X∥ψ1

from Proposition 2.7.1 (b) with p = 1, i.e.,

∥X∥L1 ≤ K2
∼= ∥X∥ψ1

since Ki
∼= ∥X∥ψ1 = K4. ⊛
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Week 8: Bernstein’s Inequality
6 Mar. 2024Problem (Exercise 2.7.11). Show that ∥X∥ψ is indeed a norm on the space Lψ.

Answer. Clearly, ∥X∥ψ ≥ 0. To check ∥X∥ψ = 0 if and only if X = 0 a.s., we first see that ∥0∥ψ = 0
as ψ(0) = 0. On the other hand, if ∥X∥ψ = 0, then by the monotone convergence theorem, we have

1 ≥ lim
t→0

E[ψ(|X|/t)] = E
[
lim
t→0

ψ(|X|/t)
]

=

∫ ∞

0

P
(
lim
t→0

ψ(|X|/t) > u
)
du

= P(|X| > 0)

∫ ∞

0

P
(
lim
t→0

ψ(|X|/t) > u | |X| > 0
)
du

= P(|X| > 0)

∫ ∞

0

du

=∞ · P(|X| > 0),

since if |X| = 0, ψ(|X|/t) = ψ(0) = 0 for all t > 0, and

P
(
lim
t→0

ψ(|X|/t) > u | |X| > 0
)
= 1

since ψ(x)→∞ for x→∞, and in this case, x = |X|/t, which indeed goes to ∞ as t→ 0. Overall,
this implies P(|X| > 0) = 0, i.e., X = 0 almost surely, hence we conclude that ∥X∥ψ = 0 if and
only if X = 0 a.s. The other two properties follows the same proof of Exercise 2.5.7. ⊛

2.8 Bernstein’s inequality

Problem (Exercise 2.8.5). Let X be a mean-zero random variable such that |X| ≤ K. Prove the
following bound on the MGF of X:

E[exp(λX)] ≤ exp
(
g(λ)E[X2]

)
where g(λ) =

λ2/2

1− |λ|K/3
,

provided that |λ| < 3/K.

Answer. From the hint, we first check the following.

Claim. For all |x| < 3,

ex ≤ 1 + x+
x2/2

1− |x|/3
.

Proof. From Taylor’s expansion,

ex = 1 + x+
x2

2

∞∑
k=0

xk

(2 + k)!/2
≤ 1 + x+

x2

2

∞∑
k=0

xk

3k
= 1 + x+

x2/2

1− |x|/3

where the last equality follows for all |x| < 3. ⊛

Now, for a random variable X such that |X| ≤ K and |λ| < 3/K, we have

E[exp(λX)] ≤ E
[
1 + λX +

λ2X2/2

1− |λX|/3

]
= 1 +

λ2E[X2]/2

1− |λ|K/3
≤ exp

(
λ2E[X2]/2

1− |λ|K/3

)
,

where we let x := λX and apply the claim. Finally, note that the right-hand side is exactly
exp
(
g(λ)E[X2]

)
, we’re done. ⊛
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Problem (Exercise 2.8.6). Deduce Theorem 2.8.4 from the bound in Exercise 2.8.5.

Answer. From Markov’s inequality, for every t ≥ 0,

P

(
N∑
i=1

Xi ≥ t

)
≤ inf
λ>0

E
[
exp
(
λ
∑N
i=1Xi

)]
exp(λt)

= inf
λ>0

e−λt
N∏
i=1

E[exp(λXi)] ≤ inf
λ>0

e−λt exp

(
g(λ)

N∑
i=1

E[X2
i ]

)

from Exercise 2.8.5, if |λ| < 3/K. Denote σ2 =
∑N
i=1 E[X2

i ], we further have

P

(
N∑
i=1

Xi ≥ t

)
≤ inf
λ>0

exp
(
−λt+ g(λ)σ2

)
.

Let 0 ≤ λ = t
σ2+tK/3 < 3/K, we see that

P

(
N∑
i=1

Xi ≥ t

)
≤ exp

(
− t2

σ2 + tK/3
+

σ2λ2/2

1− |λ|K/3

)
= exp

(
− t2/2

σ2 + tK/3

)
.

Applying the same argument for −Xi, we get

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
.

⊛
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Chapter 3

Random vectors in high dimensions

Week 9: Concentration Inequalities of Random Vectors
15 Mar. 20243.1 Concentration of the norm

Problem (Exercise 3.1.4). (a) Deduce from Theorem 3.1.1 that
√
n− CK2 ≤ E[∥X∥2] ≤

√
n+ CK2.

(b) Can CK2 be replaced by o(1), a quantity that vanishes as n→∞?

Answer. (a) From Jensen’s inequality, we have

|E[∥X∥2 −
√
n]| ≤ E[|∥X∥2 −

√
n|] ≤ ∥∥X∥2 −

√
n∥ψ2

≤ CK2

from Theorem 3.1.1 and

∥Z∥ψ2 = inf{t > 0: E[exp
(
Z2/t2

)
] ≤ 2} ≥ ∥Z∥L1

as E[exp
(
Z2/(E[|Z|]2)

)
] ≥ 1 + E[Z2]/(E[|Z|]2) ≥ 2, again from Jensen’s inequality.

(b) We first observe that E[∥X∥2] ≤
√

E[∥X∥22] =
√
n, hence we only need to deal with lower-

bound. Consider the following non-negative function

f(x) =
√
x− 1

2
(1 + x− (x− 1)2) ≥ 0

for x ≥ 0. Then, for x = ∥X∥22/n ≥ 0, we have√
∥X∥22
n
≥ 1

2

(
1 +
∥X∥22
n
−
(
∥X∥22
n
− 1

)2
)

⇒∥X∥2 ≥
√
n

2

(
1 +
∥X∥22
n
−
(
∥X∥22
n
− 1

)2
)

⇒E[∥X∥2] ≥
√
n

2

(
1 +

n

n

)
−
√
n

2
E

[(
∥X∥22 − E[∥X∥22]

n

)2
]

⇒E[∥X∥2] ≥
√
n− 1

2n3/2
Var[∥X∥22].

Expanding the variance, we see that

Var[∥X∥22] =
n∑
i=1

Var
[
X2
i

]
=

n∑
i=1

(
E[X4

i ]− E[X2
i ]

2
)
≤ n · max

1≤i≤n
E[X4

i ] = n · max
1≤i≤n

∥Xi∥4L4 ,

28
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and from the sub-gaussian property, this is ≲ n ·max1≤i≤n∥Xi∥4ψ2
= nK4. Overall,

E[∥X∥2] ≳
√
n− 1

2n3/2
nK4 =

√
n− K4

√
n
=
√
n+ o(1),

if K ≥ 1. Otherwise, when K < 1, we replace K4 by 1, the result holds still.

⊛

Problem (Exercise 3.1.5). Deduce from Theorem 3.1.1 that

Var[∥X∥2] ≤ CK4.

Answer. From the definition and the fact that the mean minimizes the MSE,

Var[∥X∥2] = E[(∥X∥2 − E[∥X∥2])2] ≤ E[(∥X∥2 −
√
n)2],

then from the proof of Exercise 3.1.4, as E[|∥X∥2 −
√
n|] ≤ cK2 for some c,

Var[∥X∥2] ≤ E[(∥X∥2 −
√
n)2] ≤ c2K4,

and by letting c2 =: C, we’re done.

⊛

Problem (Exercise 3.1.6). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent coor-
dinates Xi that satisfy E[X2

i ] = 1 and E[X4
i ] ≤ K4. Show that

Var[∥X∥2] ≤ CK4.

Answer. Firstly, observe that with our new assumption, Exercise 3.1.4 (b) again gives E[∥X∥2] ≳√
n−K4/

√
n. Then from the same reason as stated in Exercise 3.1.5,

Var[∥X∥2] ≤ E[(∥X∥2 −
√
n)2] = 2n− 2

√
nE[∥X∥2] ≲ 2n− 2

√
n

(√
n− K4

√
n

)
= 2K4,

proving the result. ⊛

Problem (Exercise 3.1.7). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent coor-
dinates Xi with continuous distributions. Assume that the densities of Xi are uniformly bounded
by 1. Show that, for any ϵ > 0, we have

P(∥X∥2 ≤ ϵ
√
n) ≤ (Cϵ)n.

Answer. We want to bound

P
(
∥X∥2 ≤ ϵ

√
n
)
= P(∥X∥22 ≤ ϵ2n) = P

(
n∑
i=1

X2
i ≤ ϵ2n

)
.

Follow the same argument as Exercise 2.2.10,a i.e., first we bound E[exp
(
−tX2

i

)
] for all t > 0. We

have

E[exp
(
−tX2

i

)
] =

∫ ∞

0

e−tx
2

fXi(x) dx ≤
∫ ∞

0

e−tx
2

dx =
1

2

√
π

t

from the Gaussian integral. Then, from the MGF trick, we have

P(∥X∥2 ≤ ϵ
√
n) = P(−∥X∥22 ≥ −ϵ2n) ≤ inf

t>0

E[exp
(
−t∥X∥22

)
]

exp(−tϵ2n)
≤ inf
t>0

(
1

2

√
π

t

)n
etϵ

2n.
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Let t = ϵ−2, we have

P(∥X∥2 ≤ ϵ
√
n) ≤

(√
π

2
ϵ · e

)n
=: (Cϵ)n

by letting C :=
√
πe/2. ⊛

aThe result does not directly follow from this because ϵ is replaced by ϵ2, and a bound on the density of Xi doesn’t
give a bound on the density of X2

i .

3.2 Covariance matrices and principal component analysis

Problem (Exercise 3.2.2). (a) Let Z be a mean zero, isotropic random vector in Rn. Let µ ∈ Rn
be a fixed vector and Σ be a fixed n× n symmetric positive semidefinite matrix. Check that
the random vector

X := µ+Σ1/2Z

has mean µ and covariance matrix Cov[X] = Σ.

(b) Let X be a random vector with mean µ and invertible covariance matrix Σ = Cov[X]. Check
that the random vector

Z := Σ−1/2(X − µ)

is an isotropic, mean zero random vector.

Answer. (a) Firstly,
E[X] = E[µ] + E[Σ1/2Z] = µ+Σ1/2E[Z] = µ

Moreover,

Cov[X] = Cov[µ+Σ1/2Z]

= E[(µ+Σ1/2Z)(µ+Σ1/2Z)⊤]− µµ⊤

= E[(µ+Σ1/2Z)Z⊤(Σ1/2)⊤]

= E[µZ⊤(Σ1/2)⊤] + E[Σ1/2ZZ⊤(Σ1/2)⊤]

= 0 + Σ1/2E[ZZ⊤](Σ1/2)⊤

= Σ1/2In(Σ
1/2)⊤

= Σ

as Σ is positive-semidefinite.

(b) Similarly,
E[Z] = Σ−1/2E[X − µ] = Σ−1/2(µ− µ) = 0,

and moreover,

Cov[Z] = Cov[Σ−1/2(X − µ)]

= E
[
(Σ−1/2(X − µ))(Σ−1/2(X − µ))⊤

]
= Σ−1/2E[(X − µ)(X − µ)⊤](Σ−1/2)⊤

= Σ−1/2Σ(Σ−1/2)⊤

= In,

hence Z is also isotropic.

⊛

Problem (Exercise 3.2.6). Let X and Y be independent, mean zero, isotropic random vectors in Rn.
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Check that
E[∥X − Y ∥22] = 2n.

Answer. This directly follows from

E[∥X − Y ∥22] = E[⟨X − Y,X − Y ⟩] = E[⟨X,X⟩]− 2E[⟨X,Y ⟩] + E[⟨Y, Y ⟩] = n− 0 + n = 2n.

⊛

Week 10: Common High-Dimensional Distributions
20 Mar. 20243.3 Examples of high-dimensional distributions

Problem (Exercise 3.3.1). Show that the spherically distributed random vector X is isotropic. Argue
that the coordinates of X are not independent.

Answer. Firstly, from the spherical symmetry of X, for any x ∈ Rn, ⟨X,x⟩ D= ⟨X, ∥x∥2e⟩ for all
e ∈ Sn−1. Hence, to show X is isotropic, from Lemma 3.2.3, it suffices to show that for any x ∈ Rn,

E[⟨X,x⟩2] = 1

n

n∑
i=1

E[⟨X, ∥x∥2ei⟩2] =
1

n
E

[
n∑
i=1

(∥x∥2Xi)
2

]
= ∥x∥22E

[
1

n

n∑
i=1

X2
i

]
= ∥x∥22,

where ei denotes the ith standard unit vector. The last equality holds from the fact that

E

[
1

n

n∑
i=1

X2
i

]
=

1

n
E[∥X∥22] =

1

n
n = 1

as X ∼ U(
√
nSn−1). On the other hand, clearly Xi’s can’t be independent since the first n − 1

coordinates determines the last coordinate. ⊛

Problem (Exercise 3.3.3). Deduce the following properties from the rotation invariance of the normal
distribution.

(a) Consider a random vector g ∼ N (0, In) and a fixed vector u ∈ Rn. Then

⟨g, u⟩ ∼ N (0, ∥u∥22).

(b) Consider independent random variables Xi ∼ N (0, σ2
i ). Then

n∑
i=1

Xi ∼ N (0, σ2) where σ2 =

n∑
i=1

σ2
i .

(c) Let G be an m × n Gaussian random matrix, i.e., the entries of G are independent N (0, 1)
random variables. Let u ∈ Rn be a fixed unit vector. Then

Gu ∼ N (0, Im).

Answer. (a) Without loss of generality, we may assume ∥u∥2 = 1 and prove

⟨g, u⟩ ∼ N (0, 1)

for any fixed unit vector u ∈ Rn. But this is clear as there must exist u1, . . . , un−1 such
that {u, u1, . . . , un−1} forms an orthonormal basis of Rn, and U := (u, u1, . . . , un−1)

⊤ is
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orthonormal. From Proposition 3.3.2, we have

Ug ∼ N (0, In),

which implies (Ug)1 ∼ N (0, 1). With (Ug)1 = u⊤g = ⟨g, u⟩, we’re done.

(b) For independent Xi ∼ N (0, σ2
i ), we have Xi/σi ∼ N (0, 1). We want to show

n∑
i=1

Xi ∼ N (0, σ2)

where σ2 =
∑n
i=1 σ

2
i . Firstly, we have g := (X1/σ1, . . . , Xn/σn) ∼ N (0, In), then by consid-

ering u := (σ1, . . . , σn) ∈ Rn, we have

⟨g, u⟩ =
n∑
i=1

Xi ∼ N (0, ∥u∥22) = N

(
0,

n∑
i=1

σ2
i

)
= N (0, σ2)

from (a).

(c) For any fixed unit vector u, (Gu)i =
∑n
j=1 gijuj = ⟨gi, u⟩ where gi = (gi1, gi2, . . . , gin) for all

i ∈ [m]. It’s clear that gi ∼ N (0, In), and from (a), ⟨gi, u⟩ ∼ N (0, 1). This implies

Gu = (⟨g1, u⟩, . . . , ⟨gm, u⟩) ∼ N (0, Im)

as desired.

⊛

Problem (Exercise 3.3.4). Let X be a random vector in Rn. Show that X has a multivariate normal
distribution if and only if every one-dimensional marginal ⟨X, θ⟩, θ ∈ Rn, has a (univariate) normal
distribution.

Answer. This is an application of Cramér-Wold device and Exercise 3.3.3 (a). Omit the details. ⊛

Problem (Exercise 3.3.5). Let X ∼ N (0, In).

(a) Show that, for any fixed vectors u, v ∈ Rn, we have

E[⟨X,u⟩⟨X, v⟩] = ⟨u, v⟩.

(b) Given a vector u ∈ Rn, consider the random variable Xu := ⟨X,u⟩. From Exercise 3.3.3 we
know that Xu ∼ N (0, ∥u∥22). Check that

∥Xu −Xv∥L2 = ∥u− v∥2

for any fixed vectors u, v ∈ Rn.

Answer. (a) It’s because

E[⟨X,u⟩⟨X, v⟩] = E[(u⊤X)(X⊤v)] = u⊤E[XX⊤]v = u⊤Inv = ⟨u, v⟩

from the fact that X is isotropic.

(b) Since Xu−Xv = ⟨X,u⟩− ⟨X, v⟩ = ⟨X,u− v⟩ = Xu−v from linearity of inner product. Hence,

∥Xu −Xv∥L2 =
√
⟨Xu−v, Xu−v⟩ =

√
E[X2

u−v] =
√

E[⟨X,u− v⟩2].
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From (a), E[⟨X,u− v⟩2] = ⟨u− v, u− v⟩ = ∥u− v∥22, hence

∥Xu −Xv∥L2 =
√
∥u− v∥22 = ∥u− v∥2.

⊛

Problem (Exercise 3.3.6). h Let G be an m× n Gaussian random matrix, i.e., the entries of G are
independent N (0, 1) random variables. Let u, v ∈ Rn be unit orthogonal vectors. Prove that Gu
and Gv are independent N (0, Im) random vectors.

Answer. It’s clear that Gu and Gv are both N (0, Im) random vectors from Exercise 3.3.3 (c). It
remains to show that Gu and Gv are independent, i.e., (Gu)i and (Gv)j are independent random
variables.

For i ̸= j, this is clear since (Gu)i = e⊤i (Gu) and (Gv)j = e⊤j (Gv), and e⊤i G gives the ith row of
G, while e⊤j G gives the jth row of G. The fact that G has independent rows proves the result for
the case of i ̸= j.

For i = j, let e⊤i G =: g⊤ where g ∼ N (0, In), and we want to show independence of (Gu)i = g⊤u
and (Gv)j = g⊤v. This is still easy since(

g⊤u
g⊤v

)
= (u, v)⊤g ∼ N (0, (u, v)⊤In(u, v)) = N (0, I2)

as u, v are unit orthogonal vectors. ⊛

Problem (Exercise 3.3.7). Let us represent g ∼ N (0, In) in polar form as

g = rθ

where r = ∥g∥2 is the length and θ = g/∥g∥2 is the direction of g. Prove the following:

(a) The length r and direction θ are independent random variables.

(b) The direction θ is uniformly distributed on the unit sphere Sn−1.

Answer. For any measurable M ⊆ Rn, given the normal density fG(g) of g, some elementary
calculus gives the polar coordinate transformation dg = rn−1 dr dσ(θ), hence

P(g ∈M) =

∫
M

fG(g) dg =

∫
A

∫
B

fG(rθ) dσ(θ)r
n−1 dr

=
ωn−1

(2π)n/2

∫
A

rn−1e−r
2/2 dr

∫
B

dσ(θ) = P(r ∈ A, θ ∈ B)

(3.1)

for some A ⊆ [0,∞) and B ⊆ Sn−1 generating M , where σ is the surface area element on Sn−1

such that
∫
Sn−1 dσ = ωn−1, i.e., ωn−1 is the surface area of the unit sphere Sn−1.

(a) From Equation 3.1, it’s possible to write

P(g ∈M) = P(r ∈ A, θ ∈ B) =: f(A)g(B)

such that g(Sn−1) = 1 with appropriate constant manipulation. Hence, with B = Sn−1,

P(r ∈ A, θ ∈ Sn−1) = P(r ∈ A) = f(A),

implying f([0,∞)) = 1 as well. This further shows that by considering A = [0,∞),

P(r ∈ [0,∞), θ ∈ B) = P(θ ∈ B) = g(B).

Such a separation of probability proves the independence.
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(b) From Equation 3.1, we see that for any B ⊆ Sn−1, the density is uniform among dσ(θ), hence
θ is uniformly distributed on Sn−1.

⊛

Problem (Exercise 3.3.9). Show that {ui}Ni=1 is a tight frame in Rn with bound A if and only if

N∑
i=1

uiu
⊤
i = AIn.

Answer. Recall that for two symmetric matrices A,B ∈ Rn×n, A = B if and only if x⊤Ax = x⊤Bx
for all x ∈ Rn. Hence,

N∑
i=1

uiu
⊤
i = AIn ⇔ x⊤

(
N∑
i=1

uiu
⊤
i

)
x = x⊤(AIn)x

for all x ∈ Rn. We see that

• The left-hand side:

x⊤

(
N∑
i=1

uiu
⊤
i

)
x =

N∑
i=1

(x⊤ui)(u
⊤
i x) =

N∑
i=1

⟨ui, x⟩2,

• The right-hand side:
x⊤AInx = Ax⊤x = A∥x∥22.

Hence,
∑N
i=1 uiu

⊤
i = AIn if and only if

∑N
i=1⟨ui, x⟩2 = A∥x∥22, i.e., {ui}Ni=1 being a tight frame. ⊛

Week 11: High-Dimensional Sub-Gaussian Distributions
29 Mar. 20243.4 Sub-gaussian distributions in higher dimensions

Problem (Exercise 3.4.3). This exercise clarifies the role of independence of coordinates in Lemma
3.4.2.

1. Let X = (X1, . . . , Xn) ∈ Rn be a random vector with sub-gaussian coordinates Xi. Show that
X is a sub-gaussian random vector.

2. Nevertheless, find an example of a random vector X with

∥X∥ψ2 ≫ max
i≤n
∥Xi∥ψ2 .

Answer. 1. We see that

∥X∥ψ2
= sup
x∈Sn−1

∥⟨X,x⟩∥ψ2
≤ sup
x∈Sn−1

n∑
i=1

∥xiXi∥ψ2
≤ sup
x∈Sn−1

∥Xi∥ψ2
<∞.

2. Just consider Xi = Z are the same where Z ∼ N (0, 1). Then, we see that

max
i
∥Xi∥ψ2

= ∥Z∥ψ2
=
√
8/3
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as E[exp
(
Z2/t2

)
] = 1/

√
1− 2/t2. On the other hand,

∥X∥ψ2
≥
∥∥⟨X,1n/√n⟩∥∥ψ2

= ∥
√
nZ∥ψ2

=
√

8n/3.

⊛

Problem (Exercise 3.4.4). Show that

∥X∥ψ2 ≍
√

n

log n
.

Answer. Since we not only want an upper-bound, but a tight, non-asymptotic behavior, we need to
calculate ∥X∥ψ2 as precise as possible. We note that

∥X∥ψ2
= sup
x∈Sn−1

∥⟨X,x⟩∥ψ2
= sup
x∈Sn−1

inf{t > 0: E[exp
(
⟨X,x⟩2/t2

)
] ≤ 2},

and clearly the supremum is attained when x = ei for some i. In this case,

∥X∥ψ2 = inf{t > 0: E[exp
(
X2
i /t

2
)
] ≤ 2}.

Note that since X ∼ U({
√
nei}i), we see if we focus on a particular coordinate i,

Xi =


0, w.p.

n− 1

n
;

√
n, w.p.

1

n
.

Hence, for any t > 0,

E[exp
(
X2
i /t

2
)
] =

n− 1

n
+

1

n
exp
( n
t2

)
.

Equating the above to be exactly 2 and solve it w.r.t. t, we have

n− 1 + en/t
2

n
= 2⇔ n− 1 + en/t

2

= 2n⇔ ln(n+ 1) =
n

t2
⇔ t =

√
n

ln(n+ 1)
,

meaning that

∥X∥ψ2
= inf{t > 0: E[exp

(
X2
i /t

2
)
] ≤ 2} =

√
n

ln(n+ 1)
≍
√

n

log n
.

⊛

Problem (Exercise 3.4.5). Let X be an isotropic random vector supported in a finite set T ⊆ Rn.
Show that in order for x to be sub-gaussian with ∥X∥ψ2 = O(1), the cardinality of the set must be
exponentially large in n:

|T | ≥ ecn.

Answer. This is a hard one. See here for details. ⊛

Problem (Exercise 3.4.7). Extend Theorem 3.4.6 for the uniform distribution on the Euclidean ball
B(0,

√
n) in Rn centered at the origin and with radius

√
n. Namely, show that a random vector

X ∼ U(B(0,
√
n))

is sub-gaussian, and
∥X∥ψ2

≤ C.
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Answer. ForX ∼ U(B(0,
√
n)), considerR := ∥X∥2/

√
n and Y := X/R =

√
nX/∥X∥2 ∼ U(

√
nSn−1).

From Theorem 3.4.6, ∥Y ∥ψ2 ≤ C. It’s clear that R ≤ 1, hence for any x ∈ Sn−1,

E[exp
(
⟨X,x⟩2/t2

)
] = E[exp

(
R2⟨Y, x⟩2/t2

)
] ≤ E[exp

(
⟨Y, x⟩2/t2

)
],

which implies ∥⟨X,x⟩∥ψ2
≤ ∥⟨Y, x⟩∥ψ2

. Hence, ∥X∥ψ2
≤ ∥Y ∥ψ2

≤ C. ⊛

Problem (Exercise 3.4.9). Consider a ball of the ℓ1 norm in Rn:

K := {x ∈ Rn : ∥x∥1 ≤ r}.

(a) Show that the uniform distribution on K is isotopic for some r ≍ n.

(b) Show that the subgaussian norm of this distribution is not bounded by an absolute constant
as the dimension n grows.

Answer. (a) Observe that for i ̸= j, (Xi, Xj)
D
= (Xi,−Xj), hence E[Xi] = 0 and E[XiXj ] = 0 for

i ̸= j. Hence, for X to be isotropic, we need E[X2
i ] = 1. Now, we note that P(|Xi| > x) =

(r − x)n/rn = (1− x/r)n for x ∈ [0, r], hence

E[X2
i ] =

∫ ∞

0

2xP(|Xi| > x) dx = 2r2
∫ r

0

x

r

(
1− x

r

)n dx

r
= 2r2

∫ 1

0

t(1− t)n dt,

which with some calculation is 2r2/(n2 + 3n+ 2). Equating this with 1 gives r ≍ n.

(b) It suffices to show that ∥Xi∥Lp > C
√
p, which in turns blow up the sub-Gaussian property in

terms of Lp norm. We see that

∥Xi∥pLp =

∫ ∞

0

pxp−1P(|Xi| > x) dx

= prp
∫ r

0

(x
r

)p−1 (
1− x

r

)n dx

r
= prp

∫ 1

0

tp−1(1− t)n dt = prp ·B(p, n+ 1),

where B is the Beta function. From the Beta function,

∥Xi∥pLp = prp · Γ(p)Γ(n+ 1)

Γ(p+ n+ 1)
,

hence ∥Xi∥Lp > C
√
p is evident from the Stirling’s formula.

⊛

Problem (Exercise 3.4.10). Show that the concentration inequality in Theorem 3.1.1 may not hold
for a general isotropic sub-gaussian random vector X. Thus, independence of the coordinates of X
is an essential requirement in that result.

Answer. We want to show that ∥∥X∥2−
√
n∥ψ2

≤ Cmax∥Xi∥2ψ2
does not hold for a general isotropic

sub-Gaussian random vector X with E[X2
i ] = 1. Let 0 < a < 1 < b such that a2 + b2 = 2, and

define
X := (aZ)ϵ(bZ)1−ϵ,

where ϵ ∼ Bern(1/2) and Z ∼ N (0, In). In human language, consider X has a distribution

FX :=
1

2
FaZ +

1

2
FbZ .
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With this construction, X is isotropic since

E[XX⊤] =
1

2
E[(aZ)(aZ)⊤] +

1

2
E[(bZ)(bZ)⊤]

=
1

2
a2E[ZZ⊤] +

1

2
b2E[ZZ⊤] =

(
a2

2
+
b2

2

)
In = In,

and E[X2
i ] = 1 with a similar calculation. Moreover, for any vector x ∈ Sn−1,

E[exp
(
⟨X,x⟩2/t2

)
] =

1

2
√

1− 2a2/t2
+

1

2
√

1− 2b2/t2
< 2

when t is large enough (compared to a, b). This shows ∥⟨X,x⟩∥ψ2
≤ t, and since a, b is taken to be

constants, X is indeed a sub-Gaussian random vector.
Now, we show that the norm of X actually deviates away from

√
n at a non-vanishing rate of

n. In particular, conciser t = (b− 1)
√
n/2, then

2E[exp
(
∥X∥2 −

√
n
)2
/t2] > E[exp

(
(∥bZ∥2 −

√
n)2/t2

)
]

> E[exp
(
(∥bZ∥2 −

√
n)2/t2

)
1∥Z∥2

2>n
]

> exp
(
(b
√
n−
√
n)2/t2

)
P(∥Z∥22 > n) since b > 1

= e4P(∥Z∥22 > n)

→ e4/2 > 4

since P(∥Z∥22 > n) = P
(∑n

i=1 Z
2
i > n

)
, and with E[Z2

i ] = Var[Zi] = 1, and Var[Z2
i ] = E[Z4

i ] −
E[Zi]2 = 3− 1 = 2 <∞,

1
n

∑n
i=1 Z

2
i − 1

√
2/
√
n

=
1√
2n

(
n∑
i=1

Z2
i − n

)
D→ N (0, 1)

by the central limit theorem, hence, the asymptotic distribution of
∑n
i=1 Z

2
i −n is symmetric around

0, meaning that P(
∑n
i=1 Z

2
i > n) = P(

∑n
i=1 Z

2
i − n > 0) = 1/2. This implies that for all large

enough n,

∥∥X∥2 −
√
n∥ψ2 ≥ t = (b− 1)

√
n

2
→∞.

⊛

Week 12: High-Dimensional Sub-Gaussian Distributions
3 Apr. 20243.5 Application: Grothendieck’s inequality and semidefinite pro-

gramming

Problem (Exercise 3.5.2). 1. Check that the assumption of Grothendieck’s inequality can be
equivalently stated as follows: ∣∣∣∣∣∣

∑
i,j

aijxiyi

∣∣∣∣∣∣ ≤ max
i
|xi| ·max

j
|yj |

for any real numbers xi and yj .

2. Show that the conclusion of Grothendieck’s inequality can be equivalently stated as follows:∣∣∣∣∣∣
∑
i,j

aij⟨ui, vj⟩

∣∣∣∣∣∣ ≤ Kmax
i
∥ui∥ ·max

j
∥vj∥
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for any Hilbert space H and any vectors ui, vj ∈ H.

Answer. Omit. ⊛

Problem (Exercise 3.5.3). Deduce the following version of Grothendieck’s inequality for symmetric
n×n matrices A = (aij) with real entries. Suppose that A is either positive semidefinie or has zero
diagonal. Assume that, for any numbers xi ∈ {−1, 1}, we have∣∣∣∣∣∣

∑
i,j

aijxixj

∣∣∣∣∣∣ ≤ 1.

Then, for any Hilbert space H and any vectors ui, vj ∈ H satisfying ∥ui∥ = ∥vj∥ = 1, we have∣∣∣∣∣∣
∑
i,j

aij⟨ui, vj⟩

∣∣∣∣∣∣ ≤ 2K,

where K is the absolute constant from Grothendieck’s inequality.

Answer. Omit. ⊛

Problem (Exercise 3.5.5). Show that the optimization (3.21) is equivalent to the following semidef-
inite program:

max⟨A,X⟩ : X ⪰ 0, Xii = 1 for i = 1, . . . , n.

Answer. Omit. ⊛

Problem (Exercise 3.5.7). Let A be an m× n matrix. Consider the optimization problem

max
∑
i,j

Aij⟨Xi, Yj⟩ : ∥Xi∥2 = ∥Yj∥2 = 1 for all i, j

over Xi, Yj ∈ Rk and k ∈ N. Formulate this problem as a semidefinite program.

Answer. Omit. ⊛

3.6 Application: Maximum cut for graphs

Problem (Exercise 3.6.4). For any ϵ > 0, given an (0.5− ϵ)-approximation algorithm for maximum
cut, which is always guaranteed to give a suitable cut, but may have a random running time. Give
a bound on the expected running time.

Answer. Omit. ⊛

Problem (Exercise 3.6.7). Prove Grothendieck’s identity.

Answer. Omit. ⊛

3.7 Kernel trick, and tightening of Grothendieck’s inequality

Problem (Exercise 3.7.4). Show that for any vectors u, v ∈ Rn and k ∈ N, we have〈
u⊗k, v⊗k

〉
= ⟨u, v⟩k.
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Answer. This is immediate from the definition, i.e.,

⟨u⊗k, v⊗k⟩ =
∑

i1,...,ik

ui1...ikvi1...ik =
∑

i1,...,ik

ui1 . . . uikvi1 . . . vik =

(
n∑
i=1

uivi

)k

by observation (and probably term-matching). ⊛

Problem (Exercise 3.7.5). (a) Show that there exist a Hilbert space H and a transformation
Φ: Rn → H such that

⟨Φ(u),Φ(v)⟩ = 2⟨u, v⟩2 + 5⟨u, v⟩3 for all u, v ∈ Rn.

(b) More generally, consider a polynomial f : R→ R with non-negative coefficients, and construct
H and Φ such that

⟨Φ(u),Φ(v)⟩ = f(⟨u, v⟩) for all u, v ∈ Rn.

(c) Show the same for any real analytic function f : R → R with non-negative coefficients, i.e.,
for any function that can be represented as a convergent series

f(x) =

∞∑
k=0

akx
k, x ∈ R (3.2)

and such that ak ≥ 0 for all k.

Answer. (a) Consider H = Rn×n ⊕ Rn×n×n. Then, consider Φ(x) := (
√
2x⊗2,

√
5x⊗3), and we

have

⟨Φ(u),Φ(v)⟩ = ⟨(
√
2u⊗2,

√
5u⊗3), (

√
2v⊗2,

√
5v⊗3)⟩

= 2⟨u⊗2, v⊗2⟩+ 5⟨u⊗3, v⊗3⟩ = 2⟨u, v⟩2 + 5⟨u, v⟩3,

where the last equality follows from Exercise 3.7.4.

(b) Consider an m-order polynomial of ⟨u, v⟩, which we write f(⟨u, v⟩) =:
∑m
k=0 ak⟨u, v⟩k. Then,

by noting that ak ≥ 0, we may define

H :=

m⊕
k=0

Rn
k

, and Φ(x) :=

m⊕
k=0

√
akx

⊗k = (
√
a0,
√
a1x,
√
a2x

⊗2, . . . ,
√
amx

⊗m).

Then by a similar calculation as (a), we have ⟨Φ(u),Φ(v)⟩ = f(⟨u, v⟩) for all u, v ∈ Rn.

(c) In this case, we just let m =∞ in (b), i.e., consider

H :=

∞⊕
k=0

Rn
k

, and Φ(x) :=

∞⊕
k=0

√
akx

⊗k,

where the limit is allowed as f converges everywhere. Note that ak ≥ 0, hence
√
ak is also

well-defined.

⊛

Problem (Exercise 3.7.6). Let f : R→ R be any real analytic function (with possibly negative coeffi-
cients in Equation 3.2). Show that there exist a Hilbert space H and transformation Φ,Ψ: Rn → H
such that

⟨Φ(u),Ψ(v)⟩ = f(⟨u, v⟩) for all u, v ∈ Rn.
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Moreover, check that

∥Φ(u)∥2 = ∥Ψ(u)∥2 =

∞∑
k=0

|ak|∥u∥2k2 .

Answer. Again, similar to Exercise 3.7.5 (c), we construct

H :=

∞⊕
k=0

Rn
k

, and Φ(x) :=

∞⊕
k=0

√
akx

⊗k, and Ψ(x) :=

∞⊕
k=0

sgn(ak)
√
|ak|x⊗k.

Then, ⟨Φ(u),Ψv⟩ = f(⟨u, v⟩) since the sign of ak is now taking care by Ψ. The norm can be
calculated as

∥Φ(u)∥2 = ⟨Φ(u),Φu⟩ =
∞∑
k=0

⟨
√
|ak|u⊗k,

√
|ak|u⊗k⟩

=

∞∑
k=0

|ak|⟨u⊗k, u⊗k⟩ =
∞∑
k=0

|ak|⟨u, u⟩k =

∞∑
k=0

|ak|∥u∥2k2 ,

where the last equality follows from Exercise 3.7.4. A similar calculation can be carried out for
∥Ψ(u)∥2. ⊛
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Random matrices

4.1 Preliminaries on matrices

Problem (Exercise 4.1.1). Suppose A is an invertible matrix with singular value decomposition

A =

n∑
i=1

siuiv
⊤
i .

Check that

A−1 =

n∑
i=1

1

si
viu

⊤
i .

Answer. Let A = UΣV ∗, and it suffices to check that

A

(
n∑
i=1

1

si
viu

⊤
i

)
= In.

Indeed, by plugging A, we have(
n∑
i=1

siuiv
⊤
i

)(
n∑
i=1

1

si
viu

⊤
i

)
=

n∑
i=1

si
si
uiv

⊤
i viu

⊤
i =

n∑
i=1

uiu
⊤
i = UU⊤ = In,

where all the cross-terms vanish since v⊤i vj = 0 as V is orthonormal, and
∑n
i=1 uiu

⊤
i = UU⊤ = In

since U is again orthonormal. ⊛

Problem (Exercise 4.1.2). Prove the following bound on the singular values si of any matrix A:

si ≤
1√
i
∥A∥F .

Answer. We have seen that ∥A∥F = ∥s∥2 =
√∑

k s
2
k, hence

∥A∥2F =

r∑
k=1

s2i ≥
∑
k≤i

s2k ≥ is2i

since we arrange sk’s in the decreasing order. This proves the result. ⊛

Problem (Exercise 4.1.3). Let Ak be the best rank k approximation of a matrix A. Express ∥A−Ak∥2
and ∥A−Ak∥2F in terms of the singular values si of A.
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Answer. From Eckart-Young-Mirsky theorem, we have

Ak =

k∑
i=1

siuiv
⊤
i ,

hence

A−Ak =

n∑
i=k+1

siuiv
⊤
i .

This implies, the singular values of the matrix A−Ak are just sk+1, . . . , sn,a implying

∥A−Ak∥2 = s2k+1,

and

∥A−Ak∥2F =

n∑
i=k+1

s2i .

⊛
aThis can be seen from the fact that the same U and V still work, but now si = 0 for all 1 ≤ i ≤ k.

Problem (Exercise 4.1.4). Let A be anm×nmatrix withm ≥ n. Prove that the following statements
are equivalent.

(a) A⊤A = In.

(b) P := AA⊤ is an orthogonal projectiona in Rm onto a subspace of dimension n.

(c) A is an isometry, or isometric embedding of Rn into Rm, which means that

∥Ax∥2 = ∥x∥2 for all x ∈ Rn.

(d) All singular values of A equal 1; equivalently

sn(A) = s1(A) = 1.

aRecall that P is a projection if P 2 = P , and P is called orthogonal if the image and kernel of P are orthogonal
subspaces.

Answer. It’s easy to see that (a), (c), and (d) are all equivalent. Indeed, for (a) and (c), we
want ∥Ax∥22 = (Ax)⊤(Ax) = xA⊤Ax = x⊤x = ∥x∥22, and the equivalency lies in the equality
xA⊤Ax = x⊤x. If ∥Ax∥2 = ∥x∥2 holds for all x, since A⊤A is a symmetric matrix, we know that
this means A⊤A = In. On the other hand, if A⊤A = In, then we clearly have the equality. For (c)
and (d), noting the Equation 4.5 suffices. Now, we focus on proving the equivalence between (a)
and (b).

• (a)⇒(b): Suppose A⊤A = In. Then P = AA⊤ is a projection since P 2 = AA⊤AA⊤ =
AInA

⊤ = AA⊤ = P . Moreover, observe that P⊤ = P , hence P is also an orthogonal
projection.a

Finally, we need to show that rank(P ) = rank(AA⊤) = n. But since A⊤A = In,

n = rank(In) = rank(A⊤A) ≤ rank(A) ≤ n

as matrix multiplication can only reduce the rank, hence rank(A) = n. This also implies
rank(A⊤) = n, hence we’re left to check whether ImA⊤ ∩ kerA = ∅. If this is true, then
rank(AA⊤) = n as well, and we’re done. But it’s well-known that ImA⊤ = (kerA)⊤, which
completes the proof.

• (b)⇒(a): We want to show that if P = AA⊤ is an orthogonal projection on a subspace of
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dimension n, then A⊤A = In. Observe that since P 2 = P ,

(AA⊤)(AA⊤) = AA⊤ ⇔ A(A⊤A− In)A⊤ = 0.

Now, we use the fact that rank(P ) = rank(AA⊤) = n. From the previous argument, we know
that rank(A) = rank(A⊤) = n, and hence

A(A⊤A− In)A⊤ = 0⇒ A(A⊤A− In) = 0

as A⊤ spans all Rn. Taking the transpose, we again have

(A⊤A− In)⊤A⊤ = 0⇒ (A⊤A− In)⊤ = 0

since again, A⊤ spans all Rn. We hence have A⊤A = In as desired.

⊛
aNote that such a characterization is standard. See here for example.

Problem (Exercise 4.1.6). Prove the following converse to Lemma 4.1.5: if (4.7) holds, then

∥A⊤A− In∥ ≤ 3max(δ, δ2).

Answer. Firstly, by the quadratic maximizing characterization, we have

∥A⊤A− In∥ = max
x∈Sn−1,y∈Sn−1

⟨(A⊤A− In)x, y⟩

≤ max
x∈Sn−1

|x⊤(A⊤A− In)x| = max
x∈Sn−1

|∥Ax∥22 − 1|.

Since we assume that ∥Ax∥2 ∈ [1− δ, 1 + δ] (with x ∈ Sn−1 now),

∥A⊤A− In∥ ≤ max|(1± δ)2 − 1| = max|δ2 ± 2δ| ≤ 3max(δ, δ2).

⊛

Problem (Exercise 4.1.8). Canonical examples of isometries and projections can be constructed from
a fixed unitary matrix U . Check that any sub-matrix of U obtained by selecting a subset of columns
is an isometry, and any sub-matrix obtained by selecting a subset of rows is a projection.

Answer. Consider a tall sub-matrix An×k of Un×n for some k < n. We know that A is an isometry
if and only if A⊤ is a projection. From Remark 4.1.7, it suffices to check A⊤A = Ik. But this
is trivial since U is unitary, and we’re basically computing pair-wise inner products between some
columns (selected in A) of U .

On the other hand, consider a fat sub-matrix Bk×n of Un×n for some k < n. We want to show
that B⊤B is an orthogonal projection (of dimension k). From Exercise 4.1.4, it’s equivalent to
showing B⊤ is an isometry, and from the above, it reduces to show that U⊤ is also unitary since
B⊤ can be viewed as a tall sub-matrix of U⊤. But this is true by definition. ⊛

Week 13: Covering and Packing Numbers
12 Apr. 20244.2 Nets, covering numbers and packing numbers

Problem (Exercise 4.2.5). (a) Suppose T is a normed space. Prove that P(K, d, ϵ) is the largest
number of closed disjoint balls with centers in K and radii ϵ/2.

(b) Show by example that the previous statement may be false for a general metric space T .
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Answer. (a) Consider any ϵ-separated subset of K. Then, B(xi, ϵ/2)’s are disjoint since if not,
then there exists y ∈ B(xi, ϵ/2) ∩B(xj , ϵ/2) such that

ϵ < d(xi, xj) ≤ d(xi, y) + d(xj , y) ≤
ϵ

2
+
ϵ

2
= ϵ,

a contradiction. On the other hand, if d(xi, xj) ≤ ϵ then

xi + xj
2

∈ B(xi, ϵ/2) ∩B(xj , ϵ/2),

hence, there is a one-to-one correspondence between ϵ-separated subset of K and families of
closed disjoint balls with centers in K and radii ϵ/2, proving the result.

(b) Let T = Z and d(x, y) = 1x ̸=y. For K = {0, 1} and ϵ = 1, we have P(K, d, 1) = 1. On the
other hand, B(0, 1/2) = {0} and B(1, 1/2) = {1} are disjoint. If the result of (a) holds, then
at least P(K, d, 1) = 2 as there are exactly two such disjoint closed balls.

⊛

Problem (Exercise 4.2.9). In our definition of the covering numbers of K, we required that the
centers xi of the balls B(xi, ϵ) that form a covering lie in K. Relaxing this condition, define the
exterior covering number N ext(K, d, ϵ) similarly but without requiring that xi ∈ K. Prove that

N ext(K, d, ϵ) ≤ N (K, d, ϵ) ≤ N ext(K, d, ϵ/2).

Answer. The lower bound is trivial. We focus on the upper bound. Consider an exterior cover
{B(xi, ϵ/2)} of K where xi might not lie in K. Now, for every i, choose exactly one yi from
B(xi, ϵ/2) ∩K is it’s non-empty. Then, {B(yi, ϵ)} covers K since

B(xi, ϵ/2) ∩K ⊆ B(yi, ϵ)

from d(x, yi) ≤ d(x, xi) + d(xi, yi) ≤ ϵ/2 + ϵ/2 = ϵ for any x ∈ B(xi, ϵ/2). Hence, by taking the
union over i, {B(yi, ϵ)} indeed cover K, so the upper bound is proved. ⊛

Problem (Exercise 4.2.10). Give a counterexample to the following monotonicity property:

L ⊆ K implies N (L, d, ϵ) ≤ N (K, d, ϵ).

Prove an approximate version of monotonicity:

L ⊆ K implies N (L, d, ϵ) ≤ N (K, d, ϵ/2).

Answer. The problem lies in the fact that we’re not allowing exterior covering. Consider K = [−1, 1]
and L = {−1, 1}. Then, N (L, d, 1) = 2 > 1 = N (K, d, 1) for d(x, y) = |x− y|.

The approximate version of monotonicity can be proved with a similar argument as Exercise
4.2.9: specifically, consider an ϵ/2-covering {xi} of K with size exactly N (K, d, ϵ/2). Now, for every
i, choose one yi ∈ B(xi, ϵ/2) ∩ L if the latter is non-empty. It turns out that {B(yi, ϵ)} covers L.
Indeed, B(xi, ϵ/2) ∩ L ⊆ B(yi, ϵ) since

d(x, yi) ≤ d(x, xi) + d(xi, yi) ≤
ϵ

2
+
ϵ

2
= ϵ

for all x ∈ B(xi, ϵ/2). ⊛

Intuition. The fundamental idea is just every such B(yi, ϵ) can cover B(xi, ϵ/2).

Problem (Exercise 4.2.15). Check that dH is indeed a metric.
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Answer. We check the following.

• dH(x, x) = 0 for all x and dH(x, y) > 0 for all x ̸= y: Trivial.

• dH(x, y) = dH(y, x) for all x, y: Trivial.

• dH(x, y) ≤ dH(x, z) + dH(y, z) for all x, y, z: Suppose x and y initially disagrees at dH(x, y)
places, and denote the set of those disagreeing indices as I. Then for any z, as long as z and
x (hence y) disagrees at an index outside I, dH(x, z) + dH(y, z) increases by 2. There’s no
way to exist a z such that dH(x, z) + dH(y, z) can decrease, at best z and x (or y) disagrees
at an index in I, then it’ll coincide with y (or x), contributing the same amount to dH(x, y).

⊛

Problem (Exercise 4.2.16). Let K = {0, 1}n. Prove that for every integer m ∈ [0, n], we have

2n∑m
k=0

(
n
k

) ≤ N (K, dH ,m) ≤ P(K, dH ,m) ≤ 2n∑⌊m/2⌋
k=0

(
n
k

) .
Answer. The middle inequality follows from Lemma 4.2.8. Now, for K = {0, 1}n, we first note that
we have |K| = 2n. Furthermore, observe the following.

Claim. For any x ∈ K, we have

|{y ∈ K : dH(x, y) ≤ m}| =
m∑
k=0

|{y ∈ K : dH(x, y) = k}| =
m∑
k=0

(
n

k

)
.

We then see the following.

• Lower bound: observe that |K| ≤ N (K, dH ,m)|{y ∈ K : dH(xi, y) ≤ m}| where {xi} is an
m-net of K of size N (K, dH ,m).

• Upper bound: observe that |K| ≥ P(K, dH ,m)|{y ∈ K : dH(xi, y) ≤ ⌊m/2⌋}| where {xi} is
m-packing of size P(K, dH ,m).

Plugging the above calculation complete the proof of both bounds. ⊛

Remark. Unlike Proposition 4.2.12, we don’t have the issue of “going outside K” since we’re working
with a hamming cube, i.e., the entire universe is exactly the collection of n-bits string. Moreover,
for the upper bound, we use ⌊m/2⌋ since m ∈ N, and taking the floor makes sure that {y ∈
K : dH(x, y) ≤ ⌊m/2⌋}’s are disjoint for {xi} being m-separated. Hence, the total cardinality is
upper bounded by |K|.

Week 14: Random Sub-Gaussian Matrices
17 Apr. 20244.3 Application: error correcting codes

Problem (Exercise 4.3.7). (a) Prove the converse to the statement of Lemma 4.3.4.

(b) Deduce a converse to Theorem 4.3.5. Conclude that for any error correcting code that encodes
k-bit strings into n-bit strings and can correct r errors, the rate must be

R ≤ 1− f(δ)

where f(t) = t log2(1/t) as before.
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Answer. Omit. ⊛

4.4 Upper bounds on random sub-gaussian matrices

Problem (Exercise 4.4.2). Let x ∈ Rn and N be an ϵ-net of the sphere Sn−1. Show that

sup
y∈N
⟨x, y⟩ ≤ ∥x∥2 ≤

1

1− ϵ
sup
y∈N
⟨x, y⟩.

Answer. The lower bound is again trivial. On the other hand, for any x ∈ Rn, consider an x0 ∈ N
such that ∥x0−x/∥x∥2∥2 ≤ ϵ (normalization is necessary since N is an ϵ-net of Sn−1, while x ∈ Rn).
Now, observe that from the Cauchy-Schwarz inequality, we have

∥x∥2 − ⟨x, x0⟩ =
〈
x,

x

∥x∥2
− x0

〉
≤ ∥x∥2

∥∥∥∥ x

∥x∥2
− x0

∥∥∥∥ ≤ ϵ∥x∥2,
which implies ⟨x, x0⟩ ≥ (1− ϵ)∥x∥2. This proves the upper bound. ⊛

Problem (Exercise 4.4.3). Let A be an m× n matrix and ϵ ∈ [0, 1/2).

(a) Show that for any ϵ-net N of the sphere Sn−1 and any ϵ-net M of the sphere Sm−1 we have

sup
x∈N ,y∈M

⟨Ax, y⟩ ≤ ∥A∥ ≤ 1

1− 2ϵ
· sup
x∈N ,y∈M

⟨Ax, y⟩.

(b) Moreover, if m = n and A is symmetric, show that

sup
x∈N
|⟨Ax, x⟩| ≤ ∥A∥ ≤ 1

1− 2ϵ
· sup
x∈N
|⟨Ax, x⟩|.

Answer. (a) The lower bound is again trivial. On the other hand, denote x∗ ∈ Sn−1 and y∗ ∈
Sm−1 such that ∥A∥ = ⟨Ax∗, y∗⟩. Pick x0 ∈ N and y0 ∈M such that ∥x∗−x0∥2, ∥y∗−y0∥2 ≤
ϵ. We then have

⟨Ax∗, y∗⟩ − ⟨Ax0, y0⟩ = ⟨A(x∗ − x0), y∗⟩+ ⟨Ax0, y∗ − y0⟩
≤ ∥A∥(∥x∗ − x0∥2∥y∗∥2 + ∥x0∥2∥y∗ − y0∥2) ≤ 2ϵ∥A∥

as ∥y∗∥ = ∥x0∥2 = 1. Rewrite the above, we have

∥A∥ − ⟨Ax0, y0⟩ ≤ 2ϵ∥A∥ ⇒ ∥A∥ ≤ 1

1− 2ϵ
⟨Ax0, y0⟩ ≤

1

1− 2ϵ
sup

x∈N ,y∈N
⟨Ax, y⟩.

(b) Following the same argument as (a), with y∗ := x∗ and y0 := x0. To be explicit to handle the
absolute value, we see that

|⟨Ax∗, x∗⟩| − |⟨Ax0, x0⟩| ≤ |⟨Ax∗, x∗⟩ − ⟨Ax0, x0⟩| ≤ 2ϵ∥A∥,

from the same argument. The result follows immediately.

⊛

Problem (Exercise 4.4.4). Let A be an m × n matrix, µ ∈ R and ϵ ∈ [0, 1/2). Show that for any
ϵ-net N of the sphere Sn−1, we have

sup
x∈Sn−1

|∥Ax∥2 − µ| ≤
C

1− 2ϵ
· sup
x∈N
|∥Ax∥2 − µ|.
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Answer. Let µ = 1. Firstly, for x ∈ Sn−1, observe that we can write∣∣∥Ax∥22 − 1
∣∣ = ⟨Rx, x⟩

for a symmetric R = A⊤A − In. Secondly, there exists x∗ such that ∥R∥ = ⟨Rx∗, x∗⟩, consider
x0 ∈ N such that ∥x0 − x∗∥ ≤ ϵ. Now, from a numerical inequality |z − 1| ≤ |z2 − 1| for z > 0, we
have

sup
x∈Sn−1

|∥Ax∥2 − 1| ≤ sup
x∈Sn−1

∣∣∥Ax∥22 − 1
∣∣ = ∥R∥

≤ 1

1− 2ϵ
sup
x∈N
|⟨Rx, x⟩| = 1

1− 2ϵ
sup
x∈N

∣∣∥Ax∥22 − 1
∣∣ ,

where the last inequality follows from Exercise 4.4.3. Further, factoring |∥Ax∥22 − 1| get

sup
x∈Sn−1

|∥Ax∥2 − 1| ≤ 1

1− 2ϵ
sup
x∈N
|∥Ax∥2 − 1| (∥Ax∥2 + 1) .

If ∥A∥ ≤ 2, then ∥Ax∥2 + 1 ≤ 3, and C = 3 suffices.
On the other hand, if ∥A∥ > 2, consider directly computing the left-hand side

sup
x∈Sn−1

|∥Ax∥2 − 1| = ∥A∥ − 1

where the maximum is attained at some x′ ∈ Sn−1. With the existence of x′′ ∈ N ∩{x : ∥x−x′∥2 ≤
ϵ}, the supremum over N can be lower bounded as

sup
x∈N
|∥Ax∥2 − 1| ≥ ∥Ax′′∥2 − 1 ≥ ∥Ax′∥2 − ∥A(x′′ − x′)∥2 − 1 ≥ ∥A∥(1− ϵ)− 1 > 1− 2ϵ.

The above implies the following.

• ∥A∥ ≤ 1
1−ϵ (supx∈N |∥Ax∥2 − 1|+ 1).

• supx∈N |∥Ax∥2 − 1| > 1− 2ϵ.

This allows us to conclude that

sup
x∈Sn−1

|∥Ax∥2 − 1| = ∥A∥ − 1 ≤ 1

1− ϵ

(
sup
x∈N
|∥Ax∥2 − 1|+ 1

)
− 1

=
1

1− ϵ

(
sup
x∈N
|∥Ax∥2 − 1|+ ϵ

)
≤ 3

1− 2ϵ
sup
x∈N
|∥Ax∥2 − 1| ,

provided that

C := 3 ≥ sup
d>1−2ϵ

1− 2ϵ

1− ϵ

(
1 +

ϵ

d

)
≥ 1− 2ϵ

1− ϵ
supx∈N |∥Ax∥2 − 1|+ ϵ

supx∈N |∥Ax∥2 − 1|
,

which is true since the middle supremum is just 1. The case that µ ̸= 1 can be easily generalized
by considering R = A⊤A− µIn. ⊛

Problem (Exercise 4.4.6). Deduce from Theorem 4.4.5 that

E[∥A∥] ≤ CK(
√
m+

√
n).

Answer. From Theorem 4.4.5, for any t > 0, we have

P(∥A∥ − CK(
√
m+

√
n) > CKt) ≤ 2 exp

(
−t2

)
.
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Then we immediately have

E[∥A∥ − CK(
√
m+

√
n)] = E[∥A∥]− CK(

√
m+

√
n)

=

∫ ∞

0

P(∥A∥ − CK(
√
m+

√
n) > CKt)CK dt

≤ 2CK

∫ ∞

0

exp
(
−t2

)
dt = CK

√
π,

hence E[∥A∥] ≤ CK(
√
m+

√
n+
√
π), and choosing a large enough C subsumes

√
π. ⊛

Problem (Exercise 4.4.7). Suppose that in Theorem 4.4.5 the entries Aij have unit variances. Prove
that for sufficiently large n and m one has

E[∥A∥] ≥ 1

4
(
√
m+

√
n).

Answer. Clearly, by choosing x = e1 ∈ Sn−1,

∥A∥ = sup
x∈Sn−1

∥Ax∥2 ≥ ∥(Ai1)1≤i≤m∥2.

On the other hand, by picking x = (A11/∥(A1j)1≤j≤n∥2, . . . , A1n/∥(A1j)1≤j≤n∥2) ∈ Sn−1 and
y = e1 ∈ Sm−1, we have

∥A∥ = sup
x∈Sn−1,y∈Sm−1

⟨Ax, y⟩ ≥
n∑
j=1

A1j

∥(A1j)1≤j≤n∥2
A1j = ∥(A1j)1≤j≤n∥2.

Hence, ∥A∥ is lower bounded by the norm of the first row and column, i.e.,

∥A∥ ≥ max(∥(Ai1)1≤i≤m∥2, ∥(A1j)1≤j≤n∥2).

Exercise 3.1.4 (b), the expectation of ∥A∥ is then greater than or equal to max(
√
m−o(1),

√
n−o(1))

by Thus, E[∥A∥] ≥ (
√
m+

√
n− o(1))/2. ⊛

Remark. An easier way to deduce the second (i.e., lower bounded by the norm of the first row) is
to note that ∥A⊤∥ = ∥A∥ by some elementary (functional) analysis.

Week 15: Stochastic Block Model and Community Detection
8 Jun. 20244.5 Application: community detection in networks

Problem (Exercise 4.5.2). Check that the matrix D has rank 2, and the non-zero eigenvalues λi and
the corresponding eigenvectors ui are

λ1 =

(
p+ q

2

)
n, u1 =

[
1n/2×1

1n/2×1

]
, λ2 =

(
p− q
2

)
n, u2 =

[
1n/2×1

−1n/2×1

]
.

Answer. Let n be an even number. Firstly, for any D ∈ Rn×n, columns 1 to n/2 are identical, same
for columns n/2 + 1 to n. Furthermore, since p > q, column 1 and n/2 + 1 are linear independent,
so rank(D) = 2.

Instead of solving the characteristic equation and find the eigenvalues, and find the corresponding
eigenvectors later, since we know that rank(D) = 2, it’s immediate that there are only 2 non-zero
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eigenvalues. Hence, we directly verify that

λ1 =

(
p+ q

2

)
n, u1 = 1n×1, λ2 =

(
p− q
2

)
n, u2 =

(
11×n/2
−11×n/2

)⊤

.

For λ1, indeed, since

Du1 = λ1u1 ⇒


p+q
2 n
p+q
2 n
...

q+p
2 n
q+p
2 n

 =

(
p+ q

2

)
n ·


1
1
...
1
1

 .

On the other hand, for λ2, we have

Du2 = λ2u2 ⇒


p−q
2 n
p−q
2 n
...

q−p
2 n
q−p
2 n

 =

(
p− q
2

)
n ·


1
1
...
−1
−1

 ,

which again holds. ⊛

Problem (Exercise 4.5.4). Deduce Weyl’s inequality from the Courant-Fisher’s min-max character-
ization of eigenvalues.

Answer. We have that from the Courant-Fisher’s min-max characterization,

λi(A) = max
dimE=i

min
x∈S(E)

⟨Ax, x⟩.

Now, as λi(A) = −λn−i+1(−A), we see that

λi(A) = −λn−i+1(−A) = − max
dimE=n−i+1

min
x∈S(E)

⟨−Ax, x⟩ = min
dimE=n−i+1

max
x∈S(E)

⟨Ax, x⟩.

We now show the Weyl’s inequality.

Theorem 4.5.1 (Weyl’s inequality). λi+j−1(A+B) ≤ λi(A) + λj(B) ≤ λi+j−n(A+B).

Proof. We first show the lower-bound. From the Courant-Fisher’s min-max characterization,
it suffices to show that for any E with dimE = i+ j− 1, there exists some x ∈ S(E) such that
⟨(A+B)x, x⟩ ≤ λi(A) + λj(B).

We first analyze λi(A). We know that from the max-min characterization,

λi(A) = min
dimE=n−i+1

max
x∈S(E)

⟨Ax, x⟩,

i.e., there exists some EA with dimEA = n − i + 1 such that λi(A) = maxx∈S(EA)⟨Ax, x⟩.
Similarly, there exists some EB with dimEB = n− j +1 satisfying the same property. Hence,
it suffices to find some unit vector x in EA ∩ EB ∩ E. We see that

dim(EA ∩ EB) ≥ dimEA + dimEB − n = n− i− j + 2,

which implies that EA∩EB will have a non-trivial intersection with E since dimE = i+ j−1,
hence we’re done. For the upper-bound, taking the negative gives the result. ■

CHAPTER 4. RANDOM MATRICES 49



Week 16: Tighter Bounds on Sub-Gaussian Matrices

To obtain the spectral stability, we see that from Weyl’s inequality, we have{
λi(A+B) ≤ λi(A) + λ1(B);

λi(A+B) ≥ λi(A) + λn(B);
⇒ λn(B) ≤ λi(A+B)− λi(A) ≤ λ1(B).

Given any symmetric S, T , by setting A := T and B := S − T , the upper-bound yields

λi(S)− λi(T ) ≤ λ1(S − T ) = ∥S − T∥.

On the other hand, by setting A := S and B := T − S, the upper-bound again yields

λi(T )− λi(S) ≤ λ1(T − S) = ∥T − S∥ = ∥S − T∥.

As this holds for every i, we have

max
i
|λi(S)− λi(T )| ≤ ∥S − T∥

as we desired. ⊛

Week 16: Tighter Bounds on Sub-Gaussian Matrices
13 Jun. 20244.6 Two-sided bounds on sub-gaussian matrices

Problem (Exercise 4.6.2). Deduce from (4.22) that

E
[∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥] ≤ CK2

(√
n

m
+
n

m

)
.

Answer. We have that for any t ≥ 0, with probability at least 1− 2 exp
(
−t2

)
,∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ ≤ K2 max(δ, δ2), where δ = C

(√
n

m
+

t√
m

)
,

and we want to prove

E
[∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥] ≤ CK2

(√
n

m
+
n

m

)
.

Firstly, we know that with u := K2(( C√
m

+ 2C2√n
m )t+ C2

m t2), we get exactly

P
(∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ > K2

(
C

√
n

m
+ C2 n

m

)
+ u

)
≤ 2e−t

2

.

Then, from the integral identity with the substitution v := u+K2(C
√

n
m + C2 n

m ),

E
[∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥]
=

(∫ K2(C
√

n
m+C2 n

m )

0

+

∫ ∞

K2(C
√

n
m+C2 n

m )

)
P
(∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ > v

)
dv

≤
∫ K2(C

√
n
m+C2 n

m )

0

1 dv +

∫ ∞

K2(C
√

n
m+C2 n

m )

P
(∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ > v

)
dv

= K2

(
C

√
n

m
+ C2 n

m

)
+

∫ ∞

0

P
(∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ > K2

(
C

√
n

m
+ C2 n

m

)
+ u

)
du
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plugging back v = u+K2(C
√

n
m + C2 n

m ),

≤ K2

(
C

√
n

m
+ C2 n

m

)
+

∫ ∞

0

2e−t
2

du

= K2

(
C

√
n

m
+ C2 n

m

)
+

∫ ∞

0

2e−t
2

K2

(
C√
m

+
2C2
√
n

m
+

2C2

m
t

)
dt

= K2

(
C

√
n

m
+ C2 n

m

)
+K2

(√
π

(
C√
m

+
2C2
√
n

m

)
+

2C2

m

)
,

which is asymptotically ≍ K2(
√

n
m + n

m ). ⊛

Problem (Exercise 4.6.3). Deduce from Theorem 4.6.1 the following bounds on the expectation:
√
m− CK2

√
n ≤ E[sn(A)] ≤ E[s1(A)] ≤

√
m+ CK2

√
n.

Answer. From Theorem 4.6.1, for any t ≥ 0,
√
m− CK2(

√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t)

with probability at least 1− 2 exp
(
−t2

)
. We want to show that

√
m− CK2

√
n ≤ E[sn(A)] ≤ E[s1(A)] ≤

√
m+ CK2

√
n.

Consider

ξ :=
max

(
0,
√
m− CK2

√
n− sn(A), s1(A)−

√
m− CK2

√
n
)

CK2
≥ 0,

then from the integral identity,

E[ξ] =
∫ ∞

0

P(ξ > t) dt ≤
∫ ∞

0

2e−t
2

dt =
√
π,

which proves the result. ⊛

Problem (Exercise 4.6.4). Give a simpler proof of Theorem 4.6.1, using Theorem 3.1.1 to obtain a
concentration bound for ∥Ax∥2 and Exercise 4.4.4 to reduce to a union bound over a net.

Answer. From the proof of Theorem 4.6.1, we know that Sn−1 admits a 1/4-net N such that
|N | ≤ 9n. Furthermore, for any x ∈ N , we have

• E[⟨Ai, x⟩] = ⟨E[Ai], x⟩ = ⟨0, x⟩ = 0;

• E[⟨Ai, x⟩2] = x⊤E[A⊤
i Ai]x = x⊤Inx = 1 (x ∈ Sn−1 too);

• ∥⟨Ai, x⟩∥ψ2
≤ ∥Ai∥ψ2

≤ K for all i,

by Theorem 3.1.1, we have ∥∥Ax∥2 −
√
m∥ψ2

≤ CK2. From Proposition 2.5.2 (i), for any t > 0,

P
(
|∥Ax∥2 −

√
m| > CK(

√
n log 9 + t)

)
≤ 2 exp

(
−(
√
n log 9 + t)2

)
≤ 2 exp

(
−(n log 9 + t2)

)
= 2 · 9−n · e−t

2

.

Finally, from Exercise 4.4.4, with a union bound over N , we have

P
(
¬
{√

m− 2CK2(
√
n log 9 + t) ≤ sn(A) ≤ s1(A) ≤

√
m+ 2CK2(

√
n log 9 + t)

})
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by the definition of sn(A) and s1(A), we have

≤ P
(

max
x∈Sn−1

∣∣∥Ax∥2 −√m∣∣ > 2CK2(
√
n log 9 + t)

)
≤ P

(
2max
x∈N

∣∣∥Ax∥2 −√m∣∣ > 2CK2(
√
n log 9 + t)

)
≤
∑
x∈N

P
(∣∣∥Ax∥2 −√m∣∣ > CK2(

√
n log 9 + t)

)
≤ 9n · 2 · 9−n · e−t

2

= 2e−t
2

.

Scaling C accommodates the additional log 9 factor finishes the proof. ⊛

4.7 Application: covariance estimation and clustering

Problem (Exercise 4.7.3). Our argument also implies the following high-probability guarantee. Check
that for any u ≥ 0, we have

∥Σm − Σ∥ ≤ CK2

(√
n+ u

m
+
n+ u

m

)
∥Σ∥

with probability at least 1− 2e−u.

Answer. Omit ⊛

Problem (Exercise 4.7.6). Prove Theorem 4.7.5 for the spectral clustering algorithm applied for the
Gaussian mixture model. Proceed as follows.

(a) Compute the covariance matrix Σ of X; note that the eigenvector corresponding to the largest
eigenvalue is parallel to µ.

(b) Use results about covariance estimation to show that the sample covariance matrix Σm is close
to Σ, if the sample size m is relatively large.

(c) Use the Davis-Kahan Theorem 4.5.5 to deduce that the first eigenvector v = v1(Σm) is close
to the direction of µ.

(d) Conclude that the signs of ⟨µ,Xi⟩ predict well which community Xi belongs to.

(e) Since v ≈ µ, conclude the same for v.

Answer. Omit ⊛
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Concentration without independence

Week 17: Concentration of Lipschitz Functions on Spheres
22 Jun. 20245.1 Concentration of Lipschitz functions on the sphere

Problem (Exercise 5.1.2). Prove the following statements.

(a) Every Lipschitz function is uniformly continuous.

(b) Every differentiable function f : Rn → R is Lipschitz, and

∥f∥Lip ≤ sup
x∈Rn

∥∇f(x)∥2.

(c) Give an example of a non-Lipschitz but uniformly continuous function f : [−1, 1]→ R.

(d) Give an example of a non-differentiable but Lipschitz function f : [−1, 1]→ R.

Answer. Omit. ⊛

Problem (Exercise 5.1.3). Prove the following statements.

(a) For a fixed θ ∈ Rn, the linear functional

f(x) = ⟨x, θ⟩

is a Lipschitz function on Rn, and ∥f∥Lip = ∥θ∥2.

(b) More generally, an m× n matrix A acting as a linear operator

A : (Rn, ∥·∥2)→ (Rm, ∥·∥2)

is Lipschitz, and ∥A∥Lip = ∥A∥.

(c) Any norm f(x) = ∥x∥ on (Rn, ∥·∥2) is a Lipschitz function. The Lipschitz norm of f is the
smallest L that satisfies

∥x∥ ≤ L∥x∥2 for all x ∈ Rn.

Answer. Omit. ⊛

Problem (Exercise 5.1.8). Prove inclusion (5.2), i.e., Ht ⊇ {x ∈
√
nSn−1 : x1 ≤ t/

√
2}.

Answer. Omit. ⊛
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Problem (Exercise 5.1.9). Let A be the subset of the sphere
√
nSn−1 such that

σ(A) > 2 exp
(
−cs2

)
for some s > 0.

(a) Prove that σ(As) > 1/2.

(b) Deduce from this that for any t ≥ s,

σ(A2t) ≥ 1− 2 exp
(
−ct2

)
.

Here c > 0 is the absolute constant from Lemma 5.1.7.

Answer. Omit. ⊛

Problem (Exercise 5.1.11). We proved Theorem 5.1.4 for functions f that are Lipschitz with respect
to the Euclidean metric ∥x− y∥2 on the sphere. Argue that the same result holds for the geodesic
metric, which is the length of the shortest arc connecting x and y.

Answer. Omit. ⊛

Problem (Exercise 5.1.12). We stated Theorem 5.1.4 for the scaled sphere
√
nSn−1. Deduce that a

Lipschitz function f on the unit sphere Sn−1 satisfies

∥f(X)− E[f(X)]∥ψ2
≤ C∥f∥Lip√

n
,

where X ∼ U(Sn−1). Equivalently, for every t ≥ 0, we have

P (|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

(
− cnt2

∥f∥2Lip

)
.

Answer. Omit. ⊛

Problem (Exercise 5.1.13). Consider a random variable Z with median M . Show that

c∥Z − E[Z]∥ψ2 ≤ ∥Z −M∥ψ2 ≤ C∥Z − E[Z]∥ψ2 ,

where c, C > 0 are some absolute constants.

Answer. Omit. ⊛

Problem (Exercise 5.1.14). Consider a random vector X taking values in some metric space (T, d).
Assume that there exists K > 0 such that

∥f(X)− E[f(X)]∥ψ2
≤ K∥f∥Lip

for every Lipschitz function f : T → R. For a subset A ⊆ T , define σ(A) := P(X ∈ A). (Then σ is
a probability measure on T .) Show that if σ(A) ≥ 1/2 then, for every t ≥ 0,

σ(At) ≥ 1− 2 exp
(
−ct2/K2

)
where c > 0 is an absolute constant.

Answer. Omit. ⊛

Problem (Exercise 5.1.15). From linear algebra, we know that any set of orthonormal vectors in Rn
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must contain at most n vectors. However, if we allow the vectors to be almost orthogonal, there
can be exponentially many of them! Prove this counterintuitive fact as follows. Fix ϵ ∈ (0, 1). Show
that there exists a set {x1, . . . , xN} of unit vectors in Rn which are mutually almost orthogonal:

|⟨xi, xj⟩| ≤ ϵ for all i ̸= j,

and the set is exponentially large in n:

N ≥ exp(c(ϵ)n).

Answer. Omit. ⊛

5.2 Concentration on other metric measure spaces

Problem (Exercise 5.2.3). Deduce Gaussian concentration inequality (Theorem 5.2.2) from Gaussian
isoperimetric inequality (Theorem 5.2.1).

Answer. Omit. ⊛

Problem (Exercise 5.2.4). Prove that in the concentration results for sphere and Gauss space (The-
orem 5.1.4 and 5.2.2), the expectation E[f(X)] can be replaced by the Lp norm (E[f(X)p])1/p for
any p ≥ 1 and for any non-negative function f . The constants may depend on p.

Answer. Omit. ⊛

Problem (Exercise 5.2.11). Let Φ(x) denote the cumulative distribution function of the standard
normal distribution N (0, 1). Consider a random vector Z = (Z1, . . . , Zn) ∼ N (0, In). Check that

ϕ(Z) := (Φ(Z1), . . . ,Φ(Zn)) ∼ U([0, 1]n).

Answer. Omit. ⊛

Problem (Exercise 5.2.12). Expressing X = ϕ(Z) by the previous exercise, use Gaussian concentra-
tion to control the deviation of f(ϕ(Z)) in terms of ∥f ◦ ϕ∥Lip ≤ ∥f∥Lip∥ϕ∥Lip. Show that ∥ϕ∥Lip is
bounded by an absolute constant and complete the proof of Theorem 5.2.10.

Answer. Omit. ⊛

Problem (Exercise 5.2.14). Use a similar method to prove Theorem 5.2.13. Define a function
ϕ : Rn →

√
nBn2 that pushes forward the Gaussian measure on Rn into the uniform measure on√

nBn2 , and check that ϕ has bounded Lipschitz norm.

Answer. Omit. ⊛

5.3 Application: Johnson-Lindenstrauss Lemma

Problem (Exercise 5.3.3). Let A be an m×n random matrix whose rows are independent, mean zero,
sub-gaussian isotropic random vectors in Rn. Show that the conclusion of Johnson-Lindenstrauss
lemma holds for Q = (1/

√
m)A.

Answer. Omit. ⊛

Problem (Exercise 5.3.4). Give an example of a set X of N points for which no scaled projection
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onto a subspace of dimension m≪ logN is an approximate isometry.

Answer. Omit. ⊛

Week 18: Tighter Bounds on Sub-Gaussian Matrices
29 Jun. 20245.4 Matrix Bernstein’s inequality

Problem (Exercise 5.4.3). (a) Consider a polynomial

f(x) = a0 + a1x+ · · ·+ apx
p.

Check that for a matrix X, we have

f(X) = a0I + a1X + · · ·+ apX
p.

In the right side, we use the standard rules for matrix addition and multiplication, so in
particular, Xp = X · · ·X (p times) there.

(b) Consider a convergent power series expansion of f about x0:

f(x) =

∞∑
k=1

ak(x− x0)k.

Check that the series of matrix terms converges, and

f(X) =

∞∑
k=1

ak(X − x0I)k.

Answer. Let X =: UΛU⊤ be the symmetric eigendecomposition of X.

(a) Since Xk = UΛU⊤ · · ·UΛU⊤ = UΛI · · · IΛU⊤ = UΛkU⊤ for all k ≥ 0, then

f(X) = Uf(Λ)U⊤ = U

(
p∑
k=0

akΛ
k

)
U⊤ =

p∑
k=0

akUΛ
kU⊤ =

p∑
k=0

akX
k.

(b) Since X − x0I = U(Λ− x0I)U⊤, then by (a),

f(X) = U

( ∞∑
k=1

ak(Λ− x0I)k
)
U⊤ =

∞∑
k=1

akU(Λ− x0I)kU⊤ =

∞∑
k=0

ak(X − x0I)k.

⊛

Problem (Exercise 5.4.5). Prove the following properties.

(a) ∥X∥ ≤ t if and only if −tI ⪯ X ⪯ tI.

(b) Let f, g : R → R be two functions. If f(x) ≤ g(x) for all x ∈ R satisfying |x| ≤ K, then
f(X) ⪯ g(X) for all X satisfying ∥X∥ ≤ K.

(c) Let f : R → R be an increasing function and X,Y are commuting matrices. Then X ⪯ Y
implies f(X) ⪯ f(Y ).

(d) Given an example showing that property (c) may fail for non-commuting matrices.

(e) In the following parts of the exercise, we develop weaker versions of property (c) that hold
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for arbitrary, nor necessarily commuting, matrices. First, show that X ⪯ Y always implies
tr f(X) ≤ tr f(Y ) for any increasing function f : R→ R.

(f) Show that 0 ⪯ X ⪯ Y implies X−1 ⪯ Y −1 if X is invertible.

(g) Show that 0 ⪯ X ⪯ Y implies logX ⪯ log Y .

Answer. Let X =: UΛU⊤ and Y =: VMV ⊤ denote the symmetric eigendecompositions of X and
Y , respectively. Additionally, let λ := diag(Λ) and µ := diag(M) in Rn.

(a) By the Courant-Fisher min-max theorem w.r.t. λ1 and λn,

∥X∥ ≤ t⇔ −t1 ≤ λ ≤ t1⇔ t1± λ ≥ 0⇔ tI ±X ⪰ 0⇔ −tI ⪯ X ⪯ tI.

(b) Since |λ| ≤ K1, then g(λ)− f(λ) ≥ 0. This implies that g(X)− f(X) = U(g(Λ)− f(Λ))U⊤

has non-negative eigenvalues. Therefore, g(X) ⪰ f(X).

(c) Since X and Y are symmetric and commute, then Y admits an eigendecomposition with V =
U . This implies λ ≤ µ. It follows that f(µ)−f(λ) ≥ 0, so f(Y )−f(X) = U(f(M)−f(Λ))U⊤

has non-negative eigenvalues. Therefore, f(X) ⪯ f(Y ).

(d) We see that

λ

((
4 2
2 4

)
−
(
3 0
0 0

))
= {5, 0},

while

λ

((
4 2
2 4

)3

−
(
3 0
0 0

)3
)

=

{√
43993 + 197

2
,−
√
43993− 197

2

}
.

(e) Since X − Y ⪯ 0, then by the Courant-Fisher min-max theorem, for any i = 1, . . . , n,

λi − µi = max
dimE=i

min
v∈S(E)

v⊤Xv − max
dimE=i

min
v∈S(E)

v⊤Y v

≤ max
dimE=i

(
min

v∈S(E)
v⊤Xv − min

v∈S(E)
v⊤Y v

)
≤ max

dimE=i
max
v∈S(E)

(
v⊤Xv − v⊤Y v

)
= max

dimE=i
max
v∈S(E)

v⊤(X − Y )v ≤ 0

Since f is increasing, then f(λi) ≤ f(µi) for all i. It follows that

tr f(X) =

n∑
i=1

f(λi) ≤
n∑
i=1

f(µi) = tr f(Y ).

(f) Since X ⪯ Y , then I = X−1/2XX−1/2 ⪯ X−1/2Y X−1/2. This implies λ(X−1/2Y X−1/2) ≥ 1.
Thus, λ(X1/2Y −1X1/2) = λ−1(X−1/2Y X−1/2) ≤ 1, so X1/2Y −1X1/2 ⪯ I. It follows that

Y −1 = X−1/2(X1/2Y −1X1/2)X−1/2 ⪯ X−1/2IX−1/2 = X−1.

(g) By (f), (X+ tI)−1 ⪰ (Y + tI)−1 for t ≥ 0. Since log z = log 1+t
z+t

∣∣∣t=∞

t=0
=
∫∞
0

1
1+t −

1
z+t dt, then

logX =

∫ ∞

0

((1 + t)−1I − (X + tI)−1) dt ⪯
∫ ∞

0

((1 + t)−1I − (Y + tI)−1) dt = log Y.

⊛

Problem (Exercise 5.4.6). Let X and Y be n× n symmetric matrices.
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(a) Show that if the matrices commute, i.e., XY = Y X, then

eX+Y = eXeY .

(b) Find and example of matrices X and Y such that

eX+Y ̸= eXeY .

Answer. (a) Since X and Y commute, by the binomial theorem and the substitution i := k − j,

eX+Y =

∞∑
k=0

(X + Y )k

k!
=

∞∑
k=0

1

k!

k∑
j=0

k!

(k − j)!j!
Xk−jY j =

∞∑
i=0

Xi

i!

∞∑
j=0

Y j

j!
= eXeY .

(b) For X :=

(
1 0
0 −1

)
and Y :=

(
0 1
1 0

)
,

eX+Y =

(
cosh

√
2 + sinh

√
2√

2
sinh

√
2√

2
sinh

√
2√

2
cosh

√
2− sinh

√
2√

2

)
, eXeY =

1

2

(
e2 + 1 e2 − 1
1− e−2 1 + e−2

)
.

⊛

Problem (Exercise 5.4.11). Let X1, . . . , XN be independent, mean zero, n × n symmetric random
matrices, such that ∥Xi∥ ≤ K almost surely for all i. Deduce from Bernstein’s inequality that

E

[∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
]
≲

∥∥∥∥∥
N∑
i=1

E[X2
i ]

∥∥∥∥∥
1/2√

1 + log n+K(1 + log n).

Answer. Let σ2 := ∥
∑N
i=1 E[X2

i ]∥. By the matrix Berstein’s inequality, for every u > 0, with the
substitution t := c−1/2σ

√
u+ log n+ c−1K(u+ log n),

P

(∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 2ne

−cmin
(

t2

σ2 ,
t
K

)
≤ 2ne−(u+logn) = 2e−u.

Then by Lemma 1.2.1,

E

[∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
]

=

(∫ c−1/2σ
√
1+logn+c−1K(1+logn)

0

+

∫ ∞

c−1/2σ
√
1+logn+c−1K(1+logn)

)
P

(∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t
)

dt

≤
∫ c−1/2σ

√
1+logn+c−1K(1+logn)

0

1 dt+

∫ ∞

c−1/2σ
√
1+logn+c−1K(1+logn)

2e−u dt

= c−1/2σ
√

1 + log n+ c−1K(1 + log n) +

∫ ∞

1

2e−u
(
2−1c−1/2σ√
u+ log n

+ c−1K

)
du

≤ c−1/2σ
√
1 + log n+ c−1K(1 + log n) +

∫ ∞

1

2e−u
(
2−1c−1/2σ√
1 + log n

+ c−1K

)
du

= c−1/2σ
√
1 + log n+ c−1K(1 + log n) + 2e−1

(
2−1c−1/2σ√
1 + log n

+ c−1K

)
≲ σ

√
1 + log n+K(1 + log n),

which is exactly what we want to show. ⊛
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Problem (Exercise 5.4.12). Let ε1, . . . , εn be independent symmetric Bernoulli random variables and
let A1, . . . , AN be symmetric n× n matrices (deterministic). Prove that, for any t ≥ 0, we have

P

(∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥ ≥ t
)
≤ 2n exp

(
−t2/2σ2

)
,

where σ2 = ∥
∑N
i=1A

2
i ∥.

Answer. Let σ2 := ∥
∑N
i=1A

2
i ∥ and λ := t/σ2 ≥ 0. By Exercise 2.2.3,

tr e
∑N

i=1 log E[eλεiAi ] = tr e
∑N

i=1 log cosh(λAi) ≤ tr e
∑N

i=1
λ2

2 A
2
i ≤ neλ2

2 λmax(
∑N

i=1 A
2
i ) = ne

λ2σ2

2

Then by the Chernoff bound and Lieb’s inequality,

P

(
λmax

(
N∑
i=1

εiAi

)
≥ t

)
≤ e−λtE[eλ·λmax(

∑N
i=1 εiAi)]

= e−λt tr e
∑N

i=1 log E[eλεiAi ] ≤ e−λtneλ2σ2

2 = ne−
t2

2σ2 .

Similarly, P(λmin(
∑N
i=1 εiAi) ≤ −t) ≤ ne

− t2

2σ2 . ⊛

Problem (Exercise 5.4.13). Let ε1, . . . , εN be independent symmetric Bernoulli random variables
and let A1, . . . , AN be symmetric n× n matrices (deterministic).

1. Prove that

E

[∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
]
≤ C

√
1 + log n

∥∥∥∥∥
N∑
i=1

A2
i

∥∥∥∥∥
1/2

.

2. More generally, prove that for every p ∈ [1,∞), we have(
E

[∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
p])1/p

≤ C
√
p+ log n

∥∥∥∥∥
N∑
i=1

A2
i

∥∥∥∥∥
1/2

.

Answer. Since (a) follows from (b) with p = 1, we will only prove (b) here. As the inequality
trivially holds for n = 1 with C = 1, let’s assume n ≥ 2 from now on.

Note that if 1 ≤ p ≤ 2, then by Stirling’s approximation Γ(z) ≤
√

2π
z

(
z
e

)z
e

1
12z ,

(∫ ∞

0

e−s(log(2n) + s)
p
2−1 ds

)1/p

≤
(∫ ∞

0

e−s(0 + s)
p
2−1 ds

)1/p

= Γ
(p
2

)1/p
≤ π

1
2p p

p−1
2p

2
1
2−

1
p e

1
2−

1
6p2

,

and that if p > 2, then by Minkowski’s inequality (and the same Stirling’s approximation),(∫ ∞

0

e−s(log(2n) + s)
p
2−1 ds

)1/p

=

(∫ ∞

0

(
e−

s
p (log(2n) + s)

1
2−

1
p
)p

ds

)1/p

since p > 2, and as x, y > 0, we have (x+ y)
1
2−

1
p ≤ x

1
2−

1
p + y

1
2−

1
p ,

≤
(∫ ∞

0

(
e−

s
p ((log(2n))

1
2−

1
p + s

1
2−

1
p )
)p

ds

)1/p

then by Minkowski’s inequality (i.e., ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp),

≤
(∫ ∞

0

(e−
s
p (log(2n))

1
2−

1
p )p ds

)1/p

+

(∫ ∞

0

(e−
s
p s

1
2−

1
p )p ds

)1/p
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then by some direct calculations,

= (log(2n))
1
2−

1
p

(∫ ∞

0

e−s ds

)1/p

+

(∫ ∞

0

e−ss
p
2−1 ds

)1/p

= (log(2n))
1
2−

1
p + Γ

(p
2

)1/p
≤ (log(2n))

1
2−

1
p +

π
1
2p p

p−1
2p

2
1
2−

1
p e

1
2−

1
6p2

.

Let σ2 := ∥
∑N
i=1A

2
i ∥. By Exercise 5.4.12, for any t ≥ 0,

P

(∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
p

≥ t

)
= P

(∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥ ≥ t1/p
)
≤ 2ne−

t2/p

2σ2 .

Then with the substitution t =:
(
σ
√

2(log(2n) + s)
)p, by Lemma 1.2.1 and Minkowski’s inequality,

(
E

[∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
p])1/p

=

∫ (σ√2 log(2n)
)p

0

+

∫ ∞(
σ
√

2 log(2n)
)p
P

(∥∥∥∥∥
N∑
i=1

εiAi

∥∥∥∥∥
p

≥ t

)
dt

1/p

≤

∫ (σ√2 log(2n)
)p

0

1 dt+

∫ ∞(
σ
√

2 log(2n)
)p 2ne− t2/p

2σ2 dt

1/p

=

((
σ
√
2 log(2n)

)p
+

∫ ∞

0

e−s
(
√
2σ)pp

2
(log(2n) + s)

p
2−1 ds

)1/p

=
√
2σ

(√
log(2n)

p
+
p

2

∫ ∞

0

e−s(log(2n) + s)
p
2−1 ds

)1/p

≤
√
2σ

(√
log(2n) +

(p
2

)1/p(∫ ∞

0

e−s(log(2n) + s)
p
2−1 ds

)1/p
)

plugging in the bound we have established in the beginning,

≤
√
2σ

(√
log(2n) +

(p
2

)1/p(
(log(2n))

1
2−

1
p1p>2 +

π
1
2p p

p−1
2p

2
1
2−

1
p e

1
2−

1
6p2

))

=
√
2σ

((
1 +

(p
2

)1/p
(log(2n))−

1
p1p>2

)√
log(2n) +

π
1
2p p

p+1
2p

√
2e

1
2−

1
6p2

)

≤
√
2σ

(
(1 + e

1
e log(16) )

√
log(2n) +

√
π√
2e

1
3

√
p

)
≍ σ

√
p+ log n,

which is exactly what we want to show. ⊛

Problem (Exercise 5.4.14). Let X be an n× n random matrix that takes values eke⊤k , k = 1, . . . , n,
with probability 1/n each. (Here (ek) denotes the standard basis in Rn.) Let X1, . . . , XN be
independent copies of X. Consider the sum S =

∑N
i=1Xi, which is a diagonal matrix.

(a) Show that the entry Sii has the same distribution as the number of balls in i-th bin when N
balls are thrown into n bins independently.

(b) Relating this to the classical coupon collector’s problem, show that if N ≍ n, then

E∥S∥ ≍ log n

log log n
.
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Deduce that the bound in Exercise 5.4.11 would fail if the logarithmic factors were removed
from it.

Answer. (a) We see that X = eke
⊤
k with k being chosen uniformly randomly among [n], where

eke
⊤
k is a matrix with all 0’s except the kth diagonal element being 1. Hence, by interpreting

each Xi as “throwing a ball into n bins,” Skk records the number of balls in the kth bin when
N balls are thrown into n bins independently.

(b) We first observe that since S is diagonal, ∥S∥ = λ1(S) = maxk Skk as all the diagonal elements
are eigenvalues of S. We first answer the question of how this related to the coupon collector’s
problem. Firstly, let’s introduce the problem formally:

Problem 5.4.1 (Coupon collector’s problem). Say we have n different types of coupons
to collect, and we buy N boxes, where each box contains a (uniformly) random type of
coupon. The classical coupon collector’s problem asks for the expected number of boxes
(i.e., N) we need in order to collect all coupons.

Intuition. From (a), we can view Skk as the number of coupons we have collected for the
kth type of the coupon, where N is the number of boxes we have bought.

Hence, the coupon collector’s problem asks for the expectedN we need for λn(S) = mink Skk >
0, while (b) is asking for the expected number of the most frequent coupons (i.e., maxk Skk)
we will see when buying only N ≍ n boxes.

Next, let’s prove the upper bound and the lower bound separately. Let 0 < c < C to be some
constants satisfying N ≤ Cn and n ≤ cN .

Claim (Upper bound). E[∥S∥] ≲ log n/ log log n.

Proof. We first note that Skk ∼ Binomial(N, 1/n) for all k, so by Exercise 2.4.3, Fixfor any
m > N/n, we have

P(∥S∥ ≥ m) = P(∃k : Skk ≥ m) ≤
n∑
k=1

P(Skk ≥ m) ≤ 3
N
n +1−m log log n

log n .

Let L :=
⌊
(C+1) logn
log logn

⌋
+ 1 > C + 1 > N/n, then

E[∥S∥] =

(
L−1∑
m=1

+

∞∑
m=L

)
P(∥S∥ ≥ m)

≤
L−1∑
m=1

1 +

∞∑
m=L

3
N
n +1−m log log n

log n

= L− 1 +
3

N
n +1−L log log n

log n

1− 3−
log log n

log n

≤ (C + 1) log n

log log n
+

3C+1−(C+1)

2
3 ·

log logn
logn

=
(C + 5

2 ) log n

log log n
,

establishing the desired upper bound. ⊛

The hard part lies in the lower bound. We will need the following fact.

Lemma 5.4.1 (Maximum of Poisson [Kim83; BSP09]). Given Y1, . . . , Yn
i.i.d.∼ Pois(1),

E
[
max

1≤k≤n
Yk

]
≍ log n

log log n
.

Such a concentration is very tight.

Claim (Lower bound). E[∥S∥] ≳ log n/ log logn
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Proof. Let MT := E[maxk{Yk} |
∑n
k=1 Yk = T ] with Y1, . . . , Yn

i.i.d.∼ Pois(1). As
(Y1, . . . , Yn) |

∑n
k=1 Yk = T ∼ Multinomial(T ; 1/n, . . . , 1/n), we know that MT is non-

decreasing w.r.t. T . Moreover, as
∑n
k=1 Yk ∼ Pois(n), by the law of total expectation

and maximum of Poisson lemma,

log n

log logn
≍ E

[
max

1≤k≤n
Yk

]
=

⌊ne2+
1
2e ⌋∑

T=0

+

∞∑
T=⌊ne2+

1
2e ⌋+1

 e−nnT

T !
MT

≤
⌊ne2+

1
2e ⌋∑

T=0

e−nnT

T !
M

⌊ne2+
1
2e ⌋

+

∞∑
T=⌊ne2+

1
2e ⌋+1

e−nnT

T !
T

≤M
⌊ne2+

1
2e ⌋
· 1 +

∞∑
T=⌊ne2+

1
2e ⌋+1

e−nnT

Γ(T )

From Stirling’s approximation, Γ(z) ≥
√
2πzz−1/2e−z for z > 0,

≤M
⌊ne2+

1
2e ⌋

+

∞∑
T=⌊ne2+

1
2e ⌋+1

e−nnT√
2πTT−1/2e−T

=M
⌊ne2+

1
2e ⌋

+
e−n√
2π

∞∑
T=⌊ne2+

1
2e ⌋+1

(
neT

1
2T

T

)T
since for all x > 0, x1/2x ≤ e1/2e, for x = T , we have

≤M
⌊ne2+

1
2e ⌋

+
e−n√
2π

∞∑
T=⌊ne2+

1
2e ⌋+1

(
ne1+

1
2e

T

)T

≤M
⌊ne2+

1
2e ⌋

+
e−n√
2π

∞∑
T=⌊ne2+

1
2e ⌋+1

e−T

=M
⌊ne2+

1
2e ⌋

+
e−n−⌊ne2+

1
2e ⌋−1

√
2π(1− e−1)

,

leading to

M
⌊ne2+

1
2e ⌋

≳
log n

log log n

as the trailing term is decreasing exponentially fast. Finally, we have

M
⌊ne2+

1
2e ⌋
≤M⌈

⌊ne
2+ 1

2e ⌋
N

⌉
N

≤

⌈
⌊ne2+ 1

2e ⌋
N

⌉
MN ≤

⌈
ne2+

1
2e

N

⌉
MN ≤ ⌈ce2+

1
2e ⌉MN ,

where the second inequality follows from the triangle inequality of max. This leads to

E[∥S∥] =MN ≥
1

⌈ce2+ 1
2e ⌉

M
⌊ne2+

1
2e ⌋

≳
log n

log log n

as desired. ⊛

Finally, the bound in Exercise 5.4.11 will fail if the logarithmic factors were removed becomes
obvious after a direct substitution. Indeed, since ∥Xi∥ = 1 =: K, Exercise 5.4.11 states that

E

[∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
]
≲

∥∥∥∥∥
N∑
i=1

E[X2
i ]

∥∥∥∥∥
1/2

,
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where the logarithmic factors were removed along with K = 1. Now, using the bound
for S :=

∑N
i=1Xi we have, with the observation that X2

i = Xi and E[X2
i ] = E[Xi] =

diag(1/n, . . . , 1/n), we see that the bound becomes
√
N/n = Θ(1), while the left-hand side

grows as log n/ log log n→∞, which is clear not valid.

⊛

Remark (Alternative examples). We give another example to demonstrate the sharpness of the matrix
Bernstein’s inequality. Consider the following random n× n matrix (slightly different from S)

T :=

N∑
i=1

n∑
k=1

b
(N)
ik eke

⊤
k ,

where b(N)
ik

i.i.d.∼ Ber(1/N). Here, we view Xi :=
∑n
k=1 b

(N)
ik eke

⊤
k

Intuition. In expectation, T and S should behave the same. However, this is easier to work
with from independence.

Claim. As N →∞, with Yk ∼ Pois(1), we have

E[λ1(T )] = E
[
max

1≤k≤n
Tkk

]
→ E

[
max

1≤k≤n
Yk

]
= Θ

(
log n

log log n

)
.

Noticeably, the above claim doesn’t require n to vary with N .

Proof. For every k ∈ [n], we apply the Poisson limit theorem since asN →∞, pN,ik = 1/N → 0

and E[SkN ] = E[
∑N
i=1 b

(N)
ik ] = 1 =: λ as N →∞. So as N →∞, SkN

D→ Pois(1).
With a similar interpretation as in (a), we can interpret SkN =

∑N
i=1 b

(N)
ik as the value

of the kth diagonal element of T , i.e., Tkk. Hence, as N → ∞, for all k, Tkk
D→ Yk where

Yk
i.i.d.∼ Pois(1). Since Tkk’s are independent, we have T D→ diag(Z1, . . . , Zn), therefore

E[λ1(T )] = E
[
max

1≤k≤n
Tkk

]
→ E

[
max

1≤k≤n
Yk

]
≍ Θ

(
log n

log log n

)
from the maximum of Poisson lemma. ⊛

A simple calculation of ∥
∑N
i=1 E[X2

i ]∥1/2 reveals that the logarithmic factors can’t be removed.

Problem (Exercise 5.4.15). Let X1, . . . , XN be independent, mean zero, m × n random matrices,
such that ∥Xi∥ ≤ K almost surely for all i. Prove that for t ≥ q0, we have

P

(∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ qt
)
≤ 2(m+ n) exp

(
− t2/2

σ2 +Kt/3

)
,

where

σ2 = max

(∥∥∥∥∥
N∑
i=1

E[X⊤
i Xi]

∥∥∥∥∥ ,
∥∥∥∥∥
N∑
i=1

E[XiX
⊤
i ]

∥∥∥∥∥
)
.

Answer. Consider the following N independent (m+ n)× (m+ n) symmetric, mean 0 matrices

X ′
i :=

(
0n×n X⊤

i

Xi 0m×m

)
.

To apply the matrix Bernstein’s inequality (Theorem 5.4.1), we need to show that ∥X ′
i∥ ≤ K ′ for
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some K ′, where we know that ∥Xi∥ ≤ K. However, it’s easy to see that since ∥Xi∥ = ∥X⊤
i ∥, we

have ∥X ′
i∥ ≤ K as well since the characteristic equation for X ′

i is

det(X ′
i − λI) = det

((
−λI X⊤

i

Xi −λI

))
= det

(
λ2I −X⊤

i Xi

)
= 0,

so ∥X ′
i∥ =

√
∥X⊤

i Xi∥ ≤ K.

Claim. Actually, we have ∥X ′
i∥ = ∥Xi∥, hence ∥X ′

i∥ ≤ K.

Proof. Observe that for any matrix A ∈ Rm×n, as ∥A∥ =
√
λ1(AA⊤) =

√
λ1(A⊤A), we have

∥A∥ =

√
λ1

((
A⊤A 0
0 AA⊤

))
=

√√√√λ1

((
0 A⊤

A 0

)2
)

=

∥∥∥∥(0 A⊤

A 0

)∥∥∥∥ .
Plugging in Xi =: A, we’re done. ⊛

Hence, from matrix Bernstein’s inequality, for every t ≥ q0,

P

(∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ qt
)
≤ 2(m+ n) exp

(
− t2/2

σ2 +Kt/3

)
,

where σ2 = ∥
∑N
i=1 E[(X ′

i)
2]∥. A quick calculation reveals that

(X ′
i)

2 =

(
0 X⊤

i

Xi 0

)(
0 X⊤

i

Xi 0

)
=

(
X⊤
i Xi 0
0 XiX

⊤
i

)
,

hence we have

σ2 = max

(∥∥∥∥∥
N∑
i=1

E[X⊤
i Xi]

∥∥∥∥∥ ,
∥∥∥∥∥
N∑
i=1

E[XiX
⊤
i ]

∥∥∥∥∥
)
,

which completes the proof. ⊛

5.5 Application: community detection in sparse networks

5.6 Application: covariance estimation for general distributions
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Chapter 6

Quadratic forms, symmetrization and
contraction

Week 19: Decoupling and Hanson-Wright Inequality
6 Jul. 20246.1 Decoupling

Problem (Exercise 6.1.4). Prove the following generalization of Theorem 6.1.1. Let A = (aij) be an
n × n matrix. Let X1, . . . , Xn be independent, mean zero random vectors in some Hilbert space.
Show that for every convex function F : R→ R, one has

E

F
 ∑
i,j : i ̸=j

aij⟨Xi, Xj⟩

 ≤ E

F
4
∑
i,j

aij⟨Xi, X
′
j⟩

 ,
where (X ′

i) is an independent copy of (Xi).

Answer. Omit. ⊛

Problem (Exercise 6.1.5). Prove the following alternative generalization of Theorem 6.1.1. Let
(uij)

n
i,j=1 be fixed vectors in some normed space. Let X1, . . . , Xn be independent, mean zero

random variables. Show that, for every convex and increasing function F , one has

E

F
∥∥∥∥∥∥

∑
i,j : i ̸=j

XiXjuij

∥∥∥∥∥∥
 ≤ E

F
4

∥∥∥∥∥∥
∑
i,j

XiX
′
juij

∥∥∥∥∥∥
 ,

where (X ′
i) is an independent copy of (Xi).

Answer. Omit. ⊛

6.2 Hanson-Wright Inequality

Problem (Exercise 6.2.4). Complete the proof of Lemma 6.2.3. Replace X ′ by g′; write all details
carefully.

Answer. Omit. ⊛

Problem (Exercise 6.2.5). Give an alternative proof of Hanson-Write inequality for normal distribu-
tions, without separating the diagonal part or decoupling.
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Week 19: Decoupling and Hanson-Wright Inequality

Answer. Omit. ⊛

Problem (Exercise 6.2.6). Consider a mean zero, sub-gaussian random vector X in Rn with ∥X∥ψ2
≤

K. Let B be an m× n matrix. Show that

E
[
exp
(
λ2∥BX∥22

)]
≤ exp

(
CK2λ2∥B∥2F

)
provided |λ| ≤ c

K∥B∥
.

To prove this bound, replace X with a Gaussian random vector g ∼ N (0, Im) along the following
lines:

(a) Prove the comparison inequality

E[exp
(
λ2∥BX∥22

)
] ≤ E[exp

(
CK2λ2∥B⊤g∥22

)
]

for every λ ∈ R.

(b) Check that
E[exp

(
λ2∥B⊤g∥22

)
] ≤ exp

(
Cλ2∥B∥2F

)
provided that |λ| ≤ c/∥B∥.

Answer. Omit. ⊛

Problem (Exercise 6.2.7). Let X1, . . . , Xn be independent, mean zero, sub-gaussian random vectors
in Rd. Let A = (aij) be an n× n matrix. prove that for every t ≥ 0, we have

P

∣∣∣∣∣∣
n∑

i,j : i ̸=j

aij⟨Xi, Xj⟩

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−cmin

(
t2

K4d∥A∥2F
,

t

K2∥A∥

))

where K = maxi∥Xi∥ψ2
.

Answer. Omit. ⊛

6.3 Concentration of anisotropic random vectors

Problem (Exercise 6.3.1). Let B be an m × n matrix and X be an isotropic random vector in Rn.
Check that

E[∥BX∥22] = ∥B∥2F .

Answer. Omit. ⊛

Problem (Exercise 6.3.3). Let D be a k ×m matrix and B be an m× n matrix. Prove that

∥DB∥F ≤ ∥D∥∥B∥F .

Answer. Let B = (b1, . . . , bn), then

∥DB∥2F =

n∑
i=1

∥Dbi∥22 ≤
n∑
i=1

∥D∥2∥bi∥22 = ∥D∥2∥B∥2F ,

where we use the fact that ∥A∥ =
√∑

i,j a
2
ij for any matrix A. ⊛

Problem (Exercise 6.3.4). Let E be a subspace of Rn of dimension d. Consider a random vector
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X = (X1, . . . , Xn) ∈ Rn with independent, mean zero, unit variance, sub-gaussian coordinates.

(a) Check that
(E[dist(X,E)2])1/2 =

√
n− d.

(b) Prove that for any t ≥ 0, the distance nicely concentrates:

P
(∣∣∣dist(X,E)−

√
n− d

∣∣∣ > t
)
≤ 2 exp

(
−ct2/K4

)
where K = maxi∥Xi∥ψ2 .

Answer. Omit. ⊛

Problem (Exercise 6.3.5). Let B be an m×n matrix, and let X be a mean zero, sub-gaussian random
vector in Rn with ∥X∥ψ2 ≤ K. Prove that for any t ≥ 0, we have

P(∥BX∥2 ≥ CK∥B∥F + t) ≤ exp

(
− ct2

K2∥B∥2

)
.

Answer. Omit. ⊛

Problem (Exercise 6.3.6). Show that there exists a mean zero, isotropic, and sub-gaussian random
vector X in Rn such that

P(∥X∥2 = 0) = P(∥X∥2 ≥ 1.4
√
n) =

1

2
.

In other words, ∥X∥2 does not concentrate near
√
n.

Answer. Omit. ⊛

Week 20: The Symmetrization Trick
13 Jul. 20246.4 Symmetrization

Problem (Exercise 6.4.1). Let X be a random variable and ξ be an independent symmetric Bernoulli
random variable.

(a) Check that ξX and ξ|X| are symmetric random variables, and they have the same distribution.

(b) If X is symmetric, show that the distribution of ξX and ξ|X| is the same as of x.

(c) Let X ′ be an independent copy of X. Check that X −X ′ is symmetric.

Answer. (a) For any random variable X and a symmetric Bernoulli random variable ξ, we first
prove that ξX D

= −ξX, i.e., P(ξX ≥ t) = P(−ξX ≥ t) for any t ∈ R. Indeed, since

P(ξX ≥ t) = P(ξX ≥ t | ξ = 1) + P(ξX ≥ t | ξ = −1)
2

=
P(X ≥ t) + P(−X ≥ t)

2

while

P(−ξX ≥ t) = P(−ξX ≥ t | ξ = 1) + P(−ξX ≥ t | ξ = −1)
2

=
P(−X ≥ t) + P(X ≥ t)

2
.

This proves that both ξX and ξ|X| are symmetric (by substituting X as |X|). Secondly, we
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show that ξX D
= ξ|X|, i.e., P(ξX ≥ t) = P(ξ|X| ≥ t) for any t ∈ R. Again, we have

P(ξ|X| ≥ t) = P(ξ|X| ≥ t | ξ = 1) + P(ξ|X| ≥ t | ξ = −1)
2

=
P(|X| ≥ t) + P(−|X| ≥ t)

2

=
P(|X| ≥ t | X ≥ 0)P(X ≥ 0) + P(|X| ≥ t | X < 0)P(X < 0)

2

+
P(−|X| ≥ t | X ≥ 0)P(X ≥ 0) + P(−|X| ≥ t | X < 0)P(X < 0)

2

=
(P(X ≥ t) + P(−X ≥ t))P(X ≥ 0) + (P(−X ≥ t) + P(X ≥ t))P(X < 0)

2

=
(P(X ≥ t) + P(−X ≥ t))(P(X ≥ 0) + P(X < 0))

2

=
P(X ≥ t) + P(−X ≥ t)

2
,

which is just P(ξX ≥ t), as we desired.

(b) Moreover, if X is symmetric, we want to show that ξX D
= ξ|X| D= X. The first equation is

from (a); as for the second, we see that for any t ≥ 0,

P(X ≥ t) = P(−X ≥ t) = P(X ≥ t) + P(−X ≥ t)
2

= P(ξX ≥ t)

from the proof of (a).

(c) It suffices to show that X −X ′ D= X ′ −X, but this is trivial since (X,X ′)
D
= (X ′, X).

⊛

Problem (Exercise 6.4.3). Where in this argument did we use the independence of the random
variables Xi? Is mean zero assumption needed for both upper and lower bounds?

Answer. If Xi’s are not independent, then {εi(Xi −X ′
i)}Ni=1 might not have the same joint distri-

bution as {(Xi −X ′
i)}Ni=1. For the mean zero assumption, see Exercise 6.4.4. ⊛

Problem (Exercise 6.4.4). (a) Prove the following generalization of Symmetrization Lemma 6.4.2
for random vectors Xi that do not necessarily have zero means:

E

[∥∥∥∥∥
N∑
i=1

Xi −
N∑
i=1

E[Xi]

∥∥∥∥∥
]
≤ 2E

[∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
]
.

(b) Argue that there can not be any non-trivial reverse inequality.

Answer. (a) We see that using Lemma 6.1.2 again, we have

E

[∥∥∥∥∥
N∑
i=1

Xi −
N∑
i=1

E[Xi]

∥∥∥∥∥
]
= E

[∥∥∥∥∥
N∑
i=1

(Xi − E[Xi])

∥∥∥∥∥
]

≤ E

[∥∥∥∥∥
N∑
i=1

((Xi − E[Xi])− (X ′
i − E[X ′

i]))

∥∥∥∥∥
]
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as E[Xi] = E[X ′
i], and using Exercise 6.4.1, we have

= E

[∥∥∥∥∥
N∑
i=1

(Xi −X ′
i)

∥∥∥∥∥
]

= E

[∥∥∥∥∥
N∑
i=1

εi(Xi −X ′
i)

∥∥∥∥∥
]

≤ E

[∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
]
+ E

[∥∥∥∥∥
N∑
i=1

εiX
′
i

∥∥∥∥∥
]
= 2E

[∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
]
.

(b) Let N = 1 and X1 = λ1 for some λ > 0. Then,

E[∥X1 − E[X1]∥2] = 0,

while
E[∥ε1X1∥2] = λ∥1∥2

can be arbitrarily large as λ→∞.

⊛

Problem (Exercise 6.4.5). Prove the following generalization of Symmetrization Lemma 6.4.2. Let
F : R+ → R be an increasing, convex function. Show that the same inequalities in Lemma 6.4.2
hold if the norm ∥·∥ is replaced with F (∥·∥), namely

E

[
F

(
1

2

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
)]
≤ E

[
F

(∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
)]
≤ E

[
F

(
2

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
)]

.

Answer. We see that for the lower bound, we have

E

[
F

(
1

2

∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
)]

= E

[
F

(
1

2

∥∥∥∥∥EX′

[
n∑
i=1

εi(Xi −X ′
i)

]∥∥∥∥∥
)]

(EX′
i
[εiX

′
i] = 0)

≤ E

[
F

(
EX′

[
1

2

∥∥∥∥∥
n∑
i=1

εi(Xi −X ′
i)

∥∥∥∥∥
])]

(Jensen’s inequality, F increasing)

≤ E

[
F

(
1

2

∥∥∥∥∥
n∑
i=1

εi(Xi −X ′
i)

∥∥∥∥∥
)]

(Jensen’s inequality)

= E

[
F

(
1

2

∥∥∥∥∥
n∑
i=1

(Xi −X ′
i)

∥∥∥∥∥
)]

(Exercise 6.4.1 (b) and (c))

≤ E

[
F

(
1

2

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥+ 1

2

∥∥∥∥∥
n∑
i=1

X ′
i

∥∥∥∥∥
)]

(F increasing)

≤ E

[
1

2
F

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
)

+
1

2
F

(∥∥∥∥∥
n∑
i=1

X ′
i

∥∥∥∥∥
)]

(F convex)

= E

[
F

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
)]

.
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On the other hand, for the upper bound, we also have

E

[
F

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
)]

= E

[
F

(∥∥∥∥∥EX′

[
n∑
i=1

(Xi −X ′
i)

]∥∥∥∥∥
)]

(EX′
i
[X ′

i] = 0)

≤ E

[
F

(
EX′

[∥∥∥∥∥
n∑
i=1

(Xi −X ′
i)

∥∥∥∥∥
])]

(Jensen’s inequality, F increasing)

≤ E

[
F

(∥∥∥∥∥
n∑
i=1

(Xi −X ′
i)

∥∥∥∥∥
)]

(Jensen’s inequality)

= E

[
F

(∥∥∥∥∥
n∑
i=1

εi(Xi −X ′
i)

∥∥∥∥∥
)]

(Exercise 6.4.1 (b) and (c))

≤ E

[
F

(∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥+
∥∥∥∥∥
n∑
i=1

εiX
′
i

∥∥∥∥∥
)]

(F increasing)

≤ E

[
1

2
F

(
2

∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
)

+
1

2
F

(
2

∥∥∥∥∥
n∑
i=1

εiX
′
i

∥∥∥∥∥
)]

(F convex)

= E

[
F

(
2

∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
)]

.

⊛

Problem (Exercise 6.4.6). Let X1, . . . , XN be independent, mean zero random variables. Show that
their sum

∑
iXi is sub-gaussian if and only if

∑
i εiXi is sub-gaussian, and

c

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
ψ2

≤

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
ψ2

≤ C

∥∥∥∥∥
N∑
i=1

εXi

∥∥∥∥∥
ψ2

.

Answer. Consider FK(x) := exp
(
x2/K2

)
− 1 for some K ≥ 0, which is clearly convex. Hence, by

Exercise 6.4.5, if ∥
∑n
i=1 εiXi∥ψ2

≤ K, then

E

[
F2K

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
)]
≤ E

[
F2K

(
2

∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
)]

= E

[
FK

(∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
)]
≤ 1,

implying ∥
∑n
i=1Xi∥ψ2 ≤ 2K. Conversely, if ∥

∑n
i=1Xi∥ψ2 ≤ K, then

E

[
F2K

(∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
)]

= E

[
FK

(
1

2

∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
)]
≤ E

[
FK

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
)]
≤ 1,

thus ∥
∑n
i=1 εiXi∥ψ2 ≤ 2K. ⊛

Week 21: Random Matrices with Non-I.I.D. Entries
20 Jul. 20246.5 Random matrices with non-i.i.d. entries

6.6 Application: matrix completion

Week 22: Contraction Trick
25 Jul. 20246.7 Contraction Principle
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Problem (Exercise 6.7.2). Check that the function f defined in (6/16) is convex. For reference,
f : RN → R is defined as

f(a) := E

[∥∥∥∥∥
N∑
i=1

aiεixi

∥∥∥∥∥
]
.

Answer. To prove that for f : RN → R where

f(a) = E

[∥∥∥∥∥
N∑
i=1

aiεixi

∥∥∥∥∥
]

is convex, consider a, b ∈ RN and some λ ∈ (0, 1), we have

f(λa+ (1− λ)b) = E

[∥∥∥∥∥
N∑
i=1

[λai + (1− λ)bi] εixi

∥∥∥∥∥
]

≤ E

[
λ

∥∥∥∥∥
N∑
i=1

aiεixi

∥∥∥∥∥+ (1− λ)

∥∥∥∥∥
N∑
i=1

biεixi

∥∥∥∥∥
]
= λf(a) + (1− λ)f(b),

implying that f is convex. ⊛

Problem (Exercise 6.7.3). Prove the following generalization of Theorem 6.7.1. Let X1, . . . , XN be
independent, mean zero random vectors in a normed space, and let a = (a1, . . . , an) ∈ Rn. Then

E

[∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
]
≤ 4∥a∥∞ · E

[∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
]
.

Answer. Let εi’s be independent Bernoulli’s random variables, then from the symmetrization and
Theorem 6.7.1 with conditioning on Xi’s, we have

E

[∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
]
≤ 2E

[∥∥∥∥∥
N∑
i=1

aiεiXi

∥∥∥∥∥
]
≤ 2∥a∥∞ · E

[∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
]
≤ 4∥a∥∞ · E

[∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
]
,

where the last inequality follows again from the symmetrization. ⊛

Problem (Exercise 6.7.5). Show that the factor
√
logN in Lemma 6.7.4 is needed in general, and

is optimal. Thus, symmetrization with Gaussian random variables is generally weaker than sym-
metrization with symmetric Bernoullis.

Answer. Consider ei’s being ith standard basis in RN , and consider Xi := εiei for all i ≥ 1. We
have

E

[∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
∞

]
= E

[∥∥∥∥∥
N∑
i=1

εiei

∥∥∥∥∥
∞

]
= E[∥(ε1, . . . , εN )∥∞] = 1,

while given gi ∼ N (0, 1), we have

E

[∥∥∥∥∥
N∑
i=1

giXi

∥∥∥∥∥
∞

]
= E

[∥∥∥∥∥
N∑
i=1

giεiei

∥∥∥∥∥
∞

]
= E[∥(g1, . . . , gN )∥∞] ≍

√
logN

due to symmetry of gi’s and Exercise 2.5.10 and 2.5.11. ⊛

Problem (Exercise 6.7.6). Let F : R+ → R be a convex increasing function. Generalize the sym-
metrization and contraction results of this and previous section by replacing the norm ∥·∥ with
F (∥·∥) throughout.
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Answer. Omit. ⊛

Problem (Exercise 6.7.7). Consider a bounded subset T ⊆ Rn, and let ε1, . . . , εn be independent
symmetric Bernoulli random variables. Let ϕi : R → R be contractions, i.e., Lipschitz functions
with ∥ϕi∥Lip ≤ 1. Then

E

[
sup
t∈T

n∑
i=1

εiϕi(ti)

]
≤ E

[
sup
t∈T

n∑
i=1

εiti

]
.

To prove this result, do the following steps:

(a) First let n = 2. Consider a subset T ⊆ R2 and contraction ϕ : R→ R, and check that

sup
t∈T

(t1 + ϕ(t2)) + sup
t∈T

(t1 − ϕ(t2)) ≤ sup
t∈T

(t1 + t2) + sup
t∈T

(t1 − t2).

(b) Use induction on n complete proof.

Answer. (a) Writing t by t′ in the second term on both sides, which gives

sup
t∈T

(t1 + ϕ(t2)) + sup
t′∈T

(t′1 − ϕ(t′2)) = sup
t,t′∈T

(
t1 + ϕ(t2) + t′1 − ϕ(t′2)

)
≤ sup
t,t′∈T

(
t1 + t′1 + |t2 − t′2|

)
= sup
t,t′∈T

(
t1 + t′1 + t2 − t′2

)
= sup

t∈T
(t1 + t2) + sup

t′∈T
(t′1 − t′2),

where we use symmetry strategically.

(b) Firstly, we observe that conditioning on ε1, . . . , εn−1 gives

E

[
sup
t∈T

n−1∑
i=1

εiϕi(ti) + εnϕn(tn)

]

=
1

2

(
sup
t∈T

n−1∑
i=1

εiϕi(ti) + ϕn(tn) + sup
t∈T

n−1∑
i=1

εiϕi(ti)− ϕn(tn)

)

≤ 1

2

(
sup
t∈T

n−1∑
i=1

εiϕi(ti) + tn + sup
t∈T

n−1∑
i=1

εiϕi(ti)− tn

)
= E

[
sup
t∈T

n−1∑
i=1

εiϕi(ti) + εntn

]
,

where the inequality comes from (a) by considering the supremum over

T (n) :=

{
(x, y) ∈ R2 : x =

n−1∑
i=1

εiϕi(ti), y = tn, (t1, . . . , tn−1, tn) ∈ T

}
.

Explicitly, we get

E

[
E

[
sup
t∈T

n−1∑
i=1

εiϕi(ti) + εnϕn(tn)

]
| ε1: n−1

]
≤ E

[
E

[
sup
t∈T

n−1∑
i=1

εiϕi(ti) + εntn

]
| ε1: n−1

]
.

By iterating this with conditioning on ε1: k for every k and apply (a) on

T (k) :=

{
(x, y) ∈ R2 : x =

k−1∑
i=1

εiϕi(ti) +

n∑
i=k+1

εiti, y = tk, (t1, . . . , tn−1, tn) ∈ T

}
,

we get the desired result.

⊛
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Problem (Exercise 6.7.8). Generalize Talagrand’s contraction principle for arbitrary Lipschitz func-
tions ϕi : R→ R without restriction on their Lipschitz norms.

Answer. Look into the proof of Exercise 6.7.7, we see that for general Lipschitz functions ϕi’s,

E

[
sup
t∈T

n∑
i=1

εiϕi(ti)

]
≤ E

[
sup
t∈T

n∑
i=1

εi∥ϕi∥Lipti

]
≤ max

1≤i≤n
∥ϕi∥LipE

[
sup
t∈T

n∑
i=1

εiti

]
,

where the last inequality follows from Theorem 6.7.1, by noting that supt∈T satisfies all the condi-
tions we need in Theorem 6.7.1. ⊛
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