

A Reliable Cryptographic Framework for Empirical Machine Unlearning Evaluation

Yiwen Tu^{1*} Pingbang Hu^{2*} Jiaqi W. Ma²

¹University of Michigan, Ann Arbor ²University of Illinois Urbana-Champaign

Motivation

Machine unlearning attracts many attentions. To evaluate it:

- Membership Inference Attack (MIA): most common choice
- ⇒ directly reflects individual privacy risk.

However, existing MIA-based evaluations are often not

- 1. Well-calibrated across different unlearning methods;
- 2. Zero-grounded: retraining is not always ranked highest;
- 3. Comparable across different attacks, yielding inconsistency.

Overview and Contributions

- 1. Formalize unlearning sample inference game, establishing a novel unlearning evaluation metric for data removal efficacy.
- 2. Demonstrate several **provable properties** of the proposed metric, dodging various pitfalls of existing MIA-based metrics.
- 3. Introduce a SWAP test for efficient empirical analysis.

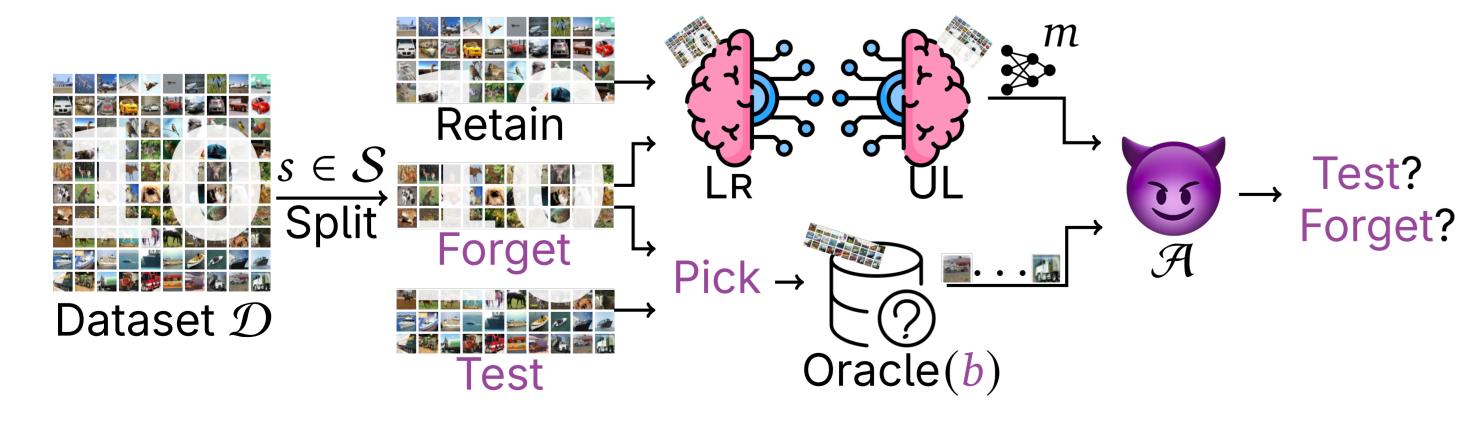
Machine Unlearning Evaluation as an Inference Game

We formulate unlearning as an game between

- UL: Unlearning algorithm (challenger), and
- \mathcal{A} : Membership-inference adversary \mathcal{A} .

Given a dataset \mathcal{D} , the unlearning inference game \mathcal{G} :

- 1. Split \mathcal{D} into retain, forget, and test sets, forming a split $s \in \mathcal{S}$.
- 2. Random oracle $O_s(b)$ with a secret bit $b \in \{0, 1\}$ is instantiated.
- 3. UL outputs unlearned model m, and \mathcal{A} attempts to infer b.



Question. How can we measure the performance of UL and \mathcal{A} ?

Cryptographic Advantage and Unlearning Quality

Intuitively, how well UL can fool $\mathcal R$ measures the performance.

• This is a well-known concept in cryptography: advantage.

For our game \mathcal{G} , the advantage $\mathrm{Adv}(\mathcal{A},\mathrm{UL})$ of \mathcal{A} against UL is

$$\frac{1}{|\mathcal{S}|} \left| \sum_{\substack{s \in \mathcal{S} \\ O = O_s(0)}} \Pr_{\substack{m \sim \mathbb{P}(\mathsf{UL}, s) \\ O = O_s(0)}} (\mathcal{A}^O(m) = 1) - \sum_{\substack{s \in \mathcal{S} \\ O = O_s(1)}} \Pr_{\substack{m \sim \mathbb{P}(\mathsf{UL}, s) \\ O = O_s(1)}} (\mathcal{A}^O(m) = 1) \right|.$$

Definition (Unlearning Quality). For any UL, its *Unlearning Quality Q* under a game G is defined as

$$Q(UL) := 1 - \sup_{\mathcal{A}} Adv(\mathcal{A}, UL),$$

Theoretical Guarantees for Q

Theorem (Zero Grounding). For any adversary \mathcal{A} , we have $\mathrm{Adv}(\mathcal{A}, \mathrm{Retrain}) = 0$. Hence, $Q(\mathrm{Retrain}) = 1$.

This guarantees that the retraining method is always the best.

Theorem (Calibrated Guarantees). Given an (ϵ, δ) -certified removal UL for some $\epsilon, \delta > 0$, for any $\mathcal R$ against UL, we have

$$\mathrm{Adv}(\mathcal{A},\mathsf{UL}) \leq 2 \cdot \left(1 - \frac{2 - 2\delta}{e^\epsilon + 1}\right) \Rightarrow Q(\mathsf{UL}) \geq \frac{4 - 4\delta}{e^\epsilon + 1} - 1$$

Hence, Q calibrates with other known privacy metrics faithfully.

SWAP Test: Approximation Algorithm for *Q*

To efficiently evaluate the Q, we propose a SWAP test:

- Consider only *swapped* splits s, s' between forget and test set.
- Approximate $Adv(\mathcal{A}, UL)$ by only few swap pairs.

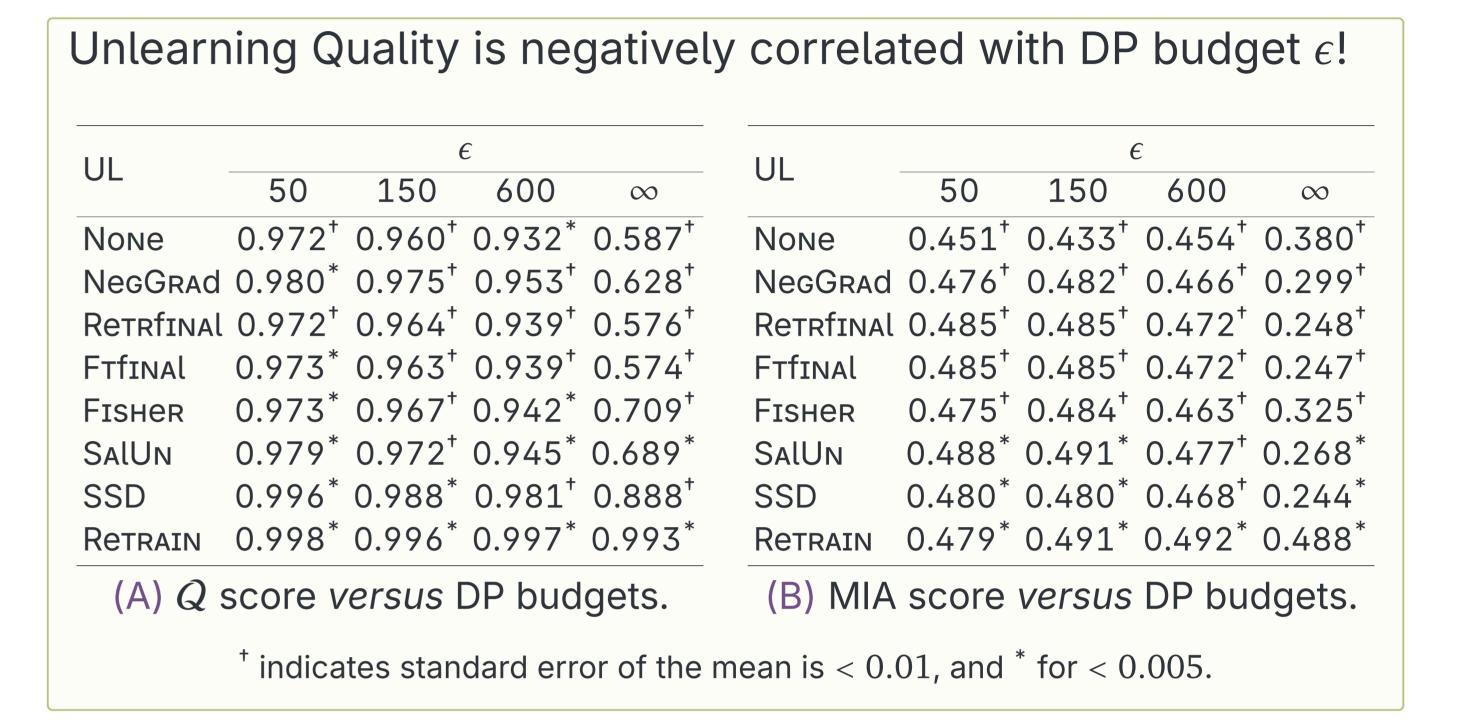
Theorem (SWAP's Zero Grounding). For any \mathcal{A} and swap splits $s, s' \in \mathcal{S}$, $\overline{\mathrm{Adv}}_{\{s,s'\}}(\mathcal{A}, \mathsf{Retrain}) = 0$.

It turned out that SWAP is not only sufficient, but necessary.

Theorem (Blowup without SWAP). For two non-swapped splits $s_1, s_2 \in \mathcal{S}$, there exists \mathcal{A} such that $\overline{\mathrm{Adv}}_{\{s_1, s_2\}}(\mathcal{A}, \mathsf{UL}) = 1$ for **any** UL. Particularly, $\overline{\mathrm{Adv}}_{\{s_1, s_2\}}(\mathcal{A}, \mathsf{Retrain}) = 1$.

Experimental Results: Model Trained with Different Privacy

Consider unlearning on models trained with DP budgets ϵ .



Next, we consider applying unlearning on different dataset sizes.

Unlearning Quality maintains a consistent ranking of UL!

UL	Dataset percentage (%)			
	0.1	0.4	0.8	1.0
Retrfinal	$0.340{\scriptstyle \pm 0.017}$	$0.586 \scriptstyle{\pm 0.015}$	$0.621 \scriptstyle{\pm 0.014}$	0.634±0.02
FTfINAL	$0.131 {\scriptstyle \pm 0.011}$	$0.585{\scriptstyle \pm 0.016}$	$0.619 \scriptstyle{\pm 0.014}$	$0.634_{\pm 0.024}$
Fisher	$0.751 \scriptstyle{\pm 0.024}$	$0.679 \scriptstyle{\pm 0.005}$	$0.734 \scriptstyle{\pm 0.006}$	0.791
NegGrad	$0.124 \scriptstyle{\pm 0.010}$	$0.564 \scriptstyle{\pm 0.018}$	$0.603 \scriptstyle{\pm 0.014}$	0.656 ± 0.038
SalUn	$0.476 \scriptstyle{\pm 0.014}$	$0.617 \scriptstyle{\pm 0.016}$	$0.689 \scriptstyle{\pm 0.013}$	$0.748_{\pm 0.004}$
SSD	$0.975 \scriptstyle{\pm 0.008}$	$0.939 \scriptstyle{\pm 0.025}$	$0.929 \scriptstyle{\pm 0.021}$	$0.928_{\pm 0.018}$
Retrain	$0.999{\scriptstyle \pm 0.000}$	$0.997 \scriptstyle{\pm 0.001}$	$0.993 \scriptstyle{\pm 0.001}$	$0.993_{\pm 0.002}$

- Well-calibrated: Q not only calibrates under ϵ , but also other hyperparameters such as dataset percentage.
- Zero-grounded: For all settings, $Q(Retrain) \approx 1$.
- ullet Comparable: While MIA score is inconsistent, Q unifies it.

Next Step

- 1. Efficient adaptation to foundation models unlearning?
- 2. More complicated unlearning scenarios, such as non-i.i.d. unlearning and feature unlearning?