Henry Fleischmann and Pingbang Hu henryf1@umich. edu and pbb@umich. edu

Gerrymandering

Every ten years, we redraw our voting maps. When these maps are drawn by politicians to maximize their electoral gains, this is known as partisan gerrymandering.

Elbridge Gerry's Original Gerry-mander.

- In response to this anti-democratic process, fourteen states, including Michigan and California, have adopted a new redistricting protocol.

- Every redistricting cycle, a commission of volunteer citizens form to draw the maps without the input of elected politicians.

[^0]
How can we ensure that independent redistricting commissions really work?

In our model, the commissioners decide between a Republican-biased, neutral, and Democrat-biased map. The true biases of the maps are known to the commissioners but unknown to the mechanism.

- The Michigan Independent Citizens Redistricting Commission is composed of four Republicans, four Democrats, and five Independents.
- After a year of learning about redistricting, the commission selects a voting map. - Our mechanism leverages their acquired insight into the true biases of the maps to ensure the selection of a truly neutral map, even if partisan commissioners prefer biased maps and commissioners make mistakes.

Our Model

- Commissioner types: D for Democrats, R for Republicans, and I for Independents. - Commissioner sub-types: partisans are either weak or strong, and independents lean weakly toward either Democrats or Republicans.

- All commissioners prefer a neutral map over a map biased toward the other party but strong partisans prefer a biased map over a neutral map.
-The commissioners decide between three categories of maps: D (biased Democrat), N (neutral), and R (Republican-biased). Their preferences are:
$s_{D}: D \succ N \succ R, \quad w_{D}: N \succ D \succ R, \quad s_{R}: R \succ N \succ D, \quad w_{R}: N \succ R \succ D$

Results

Theorem 1 (Balanced Mechanism). In commissions with equal numbers of partisans and some member preferring a neutral map, the positional-scoring voting rule with scores a neutral map, the positional-scoring voting rule with scores
$\langle 1,0,-1\rangle$ is group strategy-proof and selects a neutral map.

Theorem 2 (Unbalanced Mechanism). As long as some commissioner prefers a neutral map, the following groupcommissioner prefers a neutral map, the following group-
dependent positional scoring rule is group strategy-proof and chooses a neutral map.
$D:\left\langle\frac{1}{n_{D}}, 0,-\frac{1}{n_{D}}\right\rangle, R:\left\langle\frac{1}{n_{R}}, 0,-\frac{1}{n_{R}}\right\rangle, I:\left\langle\frac{1}{n_{R}}, 0,-\frac{1}{n_{R}}\right\rangle$.
Theorem 3 (Robustness to Misevaluations). Let x and y be the number of w_{D} Democratic commissioners and w_{R} Republican commissioners, respectively. If $n_{D} \geq n_{R}$, then Theorem 2 is robust up to $k \leq n_{I} / 4+\frac{n_{R}}{n_{D}} \cdot x+y$ commissioner misevaluations.
In the below, p is the probability a commissioner misevaluates the maps.

For small enough p, it is better to have a big commission. For large p, it is better to limit the commission size.

Future Work

- The most well-known strategy-proof voting rule is the me dian voting rule on single-peaked domains.
This voting rule can be generalized to restricted higherdimensional domains.
Is there a reasonable function from the space of redistricting plans to a domain where the median rule applies?

[^0]: The state constitutions outline every aspect of these commissions. But, when the commissioners eventually choose a map to enact, how can we be certain that they will actually choose a fair map?

