
GraSS : Scalable Influence Function with Sparse Gradient
Compression

A Foray to Efficient Data Attribution and Influence Function

Pingbang Hu1 Joseph Melkonian2 Weijing Tang3 Han Zhao1 Jiaqi W. Ma1

1University of Illinois Urbana-Champaign 2Womp Labs 3Carnegie Mellon University

September 23, 2025

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 1 / 74

Table of Content

Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 2 / 74

Table of Content

Introduction

Overview

Recap on Influence Function

Computing Influence Function

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 3 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.
▶ FIM block-diagonal approximation of Hessian
▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.
▶ FIM block-diagonal approximation of Hessian
▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.
▶ FIM block-diagonal approximation of Hessian
▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.

▶ FIM block-diagonal approximation of Hessian
▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.
▶ FIM block-diagonal approximation of Hessian

▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.
▶ FIM block-diagonal approximation of Hessian
▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Overview

Most of the popular data attribution methods are gradient-based:

▶ Influence Function: Influence Function [KL17], TRAK [Par+23], etc.
▶ Training Dynamic: SGD-influence [HNM19], Data-Value Embedding [Wan+25b], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Goal
Introduce all common tricks for speeding up gradient-based data attribution methods.
▶ FIM block-diagonal approximation of Hessian
▶ Gradient compression: Random [Woj+16], LoGra [Cho+24], and GraSS [Hu+25]

Example (Running example)
We will consider the classical Influence Function [KL17] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 4 / 74

Table of Content

Introduction

Overview

Recap on Influence Function

Computing Influence Function

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 5 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|

▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss

▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

▶ Say we have a model θ̂D trained on D, with p = |θ̂D | and n = |D|
▶ Given a quantity of interest—a target function f (D) of θ̂D , e.g., validation loss
▶ Predict how f will change, if the dataset D is counterfactually perturbed to D ′:

∆f = f (D ′)− f (D).

Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D ′ of the form D ′ = D \ B for a small batch of samples B (or D ′ = D ∪ B)

2. For each possible B , we predict τf (B) := f (D \ B)− f (D) (or f (D ∪ B)− f (D))

Popular choice of B : Bi = {zi} for zi ∈ D, i.e., τf (Bi) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 6 / 74

Introduction to Influence Function

Intuition (Estimating τf)
Parametrize D by a default weight vector w = 1/n ∈ Rn for the data points zi ’s.

⇒ Model trained on (weighted) D is a function of w : θ̂w = argminθ
∑

zi∈D wiℓi
1

⇒ Taylor-expand θ̂w around w = 1/n ⇔ estimating perturbation effects (D → D ′)

...

w

1

1
n

2
3

n

A(w , θ(0))
θ(0)

θ̂1/n

D

...

w

1

1
n

2
3

n

A(w ′, θ(0))
θ(0)

θ̂w ′

D ′

1For notational simplicity, we write ℓi := ℓ(zi ; θ) hereafter.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 7 / 74

Introduction to Influence Function

Intuition (Estimating τf)
Parametrize D by a default weight vector w = 1/n ∈ Rn for the data points zi ’s.
⇒ Model trained on (weighted) D is a function of w : θ̂w = argminθ

∑
zi∈D wiℓi

1

⇒ Taylor-expand θ̂w around w = 1/n ⇔ estimating perturbation effects (D → D ′)

...

w

1

1
n

2
3

n

A(w , θ(0))
θ(0)

θ̂1/n

D

...

w

1

1
n

2
3

n

A(w ′, θ(0))
θ(0)

θ̂w ′

D ′

1For notational simplicity, we write ℓi := ℓ(zi ; θ) hereafter.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 7 / 74

Introduction to Influence Function

Intuition (Estimating τf)
Parametrize D by a default weight vector w = 1/n ∈ Rn for the data points zi ’s.
⇒ Model trained on (weighted) D is a function of w : θ̂w = argminθ

∑
zi∈D wiℓi

1

⇒ Taylor-expand θ̂w around w = 1/n ⇔ estimating perturbation effects (D → D ′)

...

w

1

1
n

2
3

n

A(w , θ(0))
θ(0)

θ̂1/n

D

...

w

1

1
n

2
3

n

A(w ′, θ(0))
θ(0)

θ̂w ′

D ′

1For notational simplicity, we write ℓi := ℓ(zi ; θ) hereafter.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 7 / 74

Introduction to Influence Function

Intuition (Estimating τf)
Parametrize D by a default weight vector w = 1/n ∈ Rn for the data points zi ’s.
⇒ Model trained on (weighted) D is a function of w : θ̂w = argminθ

∑
zi∈D wiℓi

1

⇒ Taylor-expand θ̂w around w = 1/n ⇔ estimating perturbation effects (D → D ′)

...

w

1

1
n

2
3

n

A(w , θ(0))
θ(0)

θ̂1/n

D

...

w

1

1
n

2
3

n

A(w ′, θ(0))
θ(0)

θ̂w ′

D ′

1For notational simplicity, we write ℓi := ℓ(zi ; θ) hereafter.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 7 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi

⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f

= τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi})

= [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n

≈ ϵ|ϵ=− 1
n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Counterfactual Prediction from Freshman Calculus

To estimate τf ({zi}) = f (D \ {zi})− f (D):

▶ Write D \ {zi} as D − 1
nzi ⇒ τf ({zi}) = f (D + ϵzi)− f (D) with ϵ = −1/n!

Since θ̂w is a function of w , so is f (w):

1. From first-order approximation (i.e., Taylor expansion):

∆f = τf ({zi}) = [f (D + ϵzi)− f (D)]|ϵ=− 1
n
≈ ϵ|ϵ=− 1

n
· df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

.

2. From chain rule:

df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂+ϵzi)
⊤
∣∣∣
ϵ=0

· dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂1/n)
⊤ · dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 8 / 74

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let θ̂ = θ̂1/n be the ERM trained on D and Hθ̂ =
1
n

∑
zi∈D ∇2

θℓi be the empirical Hessian.

The
influence function of upweighting zi ∈ D on the target function f is:

I(zi , f) :=
df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂)
⊤ dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi .

...

w

1
2

n

A(w ′, θ(0))
θ(0)

θ̂w ′ =: θ̂+ϵzi

θ̂w ′

θ̂ = θ̂1/n

θ̂w ′ − θ̂ ≈ ϵ×−H−1
θ̂

∇θℓi︸ ︷︷ ︸
dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

ϵ
i w ′ ⇔ D + ϵzi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 9 / 74

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let θ̂ = θ̂1/n be the ERM trained on D and Hθ̂ =
1
n

∑
zi∈D ∇2

θℓi be the empirical Hessian. The
influence function of upweighting zi ∈ D on the target function f is:

I(zi , f) :=
df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂)
⊤ dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi .

...

w

1
2

n

A(w ′, θ(0))
θ(0)

θ̂w ′ =: θ̂+ϵzi

θ̂w ′

θ̂ = θ̂1/n

θ̂w ′ − θ̂ ≈ ϵ×−H−1
θ̂

∇θℓi︸ ︷︷ ︸
dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

ϵ
i w ′ ⇔ D + ϵzi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 9 / 74

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let θ̂ = θ̂1/n be the ERM trained on D and Hθ̂ =
1
n

∑
zi∈D ∇2

θℓi be the empirical Hessian. The
influence function of upweighting zi ∈ D on the target function f is:

I(zi , f) :=
df (θ̂+ϵzi)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θf (θ̂)
⊤ dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

= −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi .

...

w

1
2

n

A(w ′, θ(0))
θ(0)

θ̂w ′ =: θ̂+ϵzi

θ̂w ′

θ̂ = θ̂1/n

θ̂w ′ − θ̂ ≈ ϵ×−H−1
θ̂

∇θℓi︸ ︷︷ ︸
dθ̂+ϵzi

dϵ

∣∣∣∣∣
ϵ=0

ϵ
i w ′ ⇔ D + ϵzi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 9 / 74

Table of Content

Introduction

Overview

Recap on Influence Function

Computing Influence Function

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 10 / 74

Computing Influence Function

As previously seen (Influence function)
Counterfactual prediction of removing zi is ∆f = τf ({zi}) ≈ ϵ · I(zi , f) with ϵ = −1/n, where

I(zi , f) = −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi , Hθ̂ =

1
n

∑
zi∈D

∇2
θℓi

The main computation is the inverse-Hessian-vector-product H−1
θ̂

×∇θℓi , or iHVP:

Remark
Once iHVP is solved, τf ({zi}) can be computed by efficient inner-product with ∇θf .

▶ Vector ∇θℓi ∈ Rp: first-order gradient for all zi ∈ D

▶ Inverse-Hessian H−1
θ̂

∈ Rp×p: inverting a p × p second-order Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 11 / 74

Computing Influence Function

As previously seen (Influence function)
Counterfactual prediction of removing zi is ∆f = τf ({zi}) ≈ ϵ · I(zi , f) with ϵ = −1/n, where

I(zi , f) = −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi , Hθ̂ =

1
n

∑
zi∈D

∇2
θℓi

The main computation is the inverse-Hessian-vector-product H−1
θ̂

×∇θℓi , or iHVP:

Remark
Once iHVP is solved, τf ({zi}) can be computed by efficient inner-product with ∇θf .

▶ Vector ∇θℓi ∈ Rp: first-order gradient for all zi ∈ D

▶ Inverse-Hessian H−1
θ̂

∈ Rp×p: inverting a p × p second-order Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 11 / 74

Computing Influence Function

As previously seen (Influence function)
Counterfactual prediction of removing zi is ∆f = τf ({zi}) ≈ ϵ · I(zi , f) with ϵ = −1/n, where

I(zi , f) = −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi , Hθ̂ =

1
n

∑
zi∈D

∇2
θℓi

The main computation is the inverse-Hessian-vector-product H−1
θ̂

×∇θℓi , or iHVP:

Remark
Once iHVP is solved, τf ({zi}) can be computed by efficient inner-product with ∇θf .

▶ Vector ∇θℓi ∈ Rp: first-order gradient for all zi ∈ D

▶ Inverse-Hessian H−1
θ̂

∈ Rp×p: inverting a p × p second-order Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 11 / 74

Computing Influence Function

As previously seen (Influence function)
Counterfactual prediction of removing zi is ∆f = τf ({zi}) ≈ ϵ · I(zi , f) with ϵ = −1/n, where

I(zi , f) = −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi , Hθ̂ =

1
n

∑
zi∈D

∇2
θℓi

The main computation is the inverse-Hessian-vector-product H−1
θ̂

×∇θℓi , or iHVP:

Remark
Once iHVP is solved, τf ({zi}) can be computed by efficient inner-product with ∇θf .

▶ Vector ∇θℓi ∈ Rp: first-order gradient for all zi ∈ D

▶ Inverse-Hessian H−1
θ̂

∈ Rp×p: inverting a p × p second-order Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 11 / 74

Computing Influence Function

As previously seen (Influence function)
Counterfactual prediction of removing zi is ∆f = τf ({zi}) ≈ ϵ · I(zi , f) with ϵ = −1/n, where

I(zi , f) = −∇θf (θ̂)
⊤H−1

θ̂
∇θℓi , Hθ̂ =

1
n

∑
zi∈D

∇2
θℓi

The main computation is the inverse-Hessian-vector-product H−1
θ̂

×∇θℓi , or iHVP:

Remark
Once iHVP is solved, τf ({zi}) can be computed by efficient inner-product with ∇θf .

▶ Vector ∇θℓi ∈ Rp: first-order gradient for all zi ∈ D

▶ Inverse-Hessian H−1
θ̂

∈ Rp×p: inverting a p × p second-order Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 11 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)

▶ Computing inverse-Hessian H−1
θ̂

requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).

▶ Storing inverse-Hessian H−1
θ̂

requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:

▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

▶ Computing all vectors {∇θℓi}ni=1 requires O(np)
▶ Computing inverse-Hessian H−1

θ̂
requires O(p2 + p3) = O(p3)

▶ Computing product requires O(np2)

Next, the issue of storage:

▶ Storing all vectors {∇θℓi ∈ Rp}ni=1 requires O(np).
▶ Storing inverse-Hessian H−1

θ̂
requires O(p2)

Remark (Main bottleneck)
Respectively, the main bottlenecks are:
▶ Computation: inverse-Hessian O(p3)

▶ Storage: vectors + inverse-Hessian O(np + p2)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 12 / 74

Table of Content

Introduction

Accelerating iHVP

Small Detour

Hessian Approximation

Gradient Compression

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 13 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally

▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Classical iHVP

iHVP is actually a general problem:

▶ E.g., it appears in stochastic optimization (read: conditioned gradient)

▶ Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

▶ They require using the result of iHVP literally
▶ LiSSA [ABH17], DataInf [Kwo+24]: avoiding performing large matrix inverse

However, they tend to be slow and can’t be scaled up.

Remark
iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 14 / 74

Table of Content

Introduction

Accelerating iHVP

Small Detour

Hessian Approximation

Gradient Compression

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 15 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)
▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)
▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)
▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)
▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)

▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)
▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)
For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fθ̂ equals Hθ̂:

Fθ̂ :=
1
n

∑
zi∈D

∇θℓi∇θℓ
⊤
i .

We see that using FIM approximation:

▶ Although no higher-order differentiation, computation changes from O(p2) to O(np2)
▶ Inverting still requires O(p3), as well as storage O(p2)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 16 / 74

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fθ̂:

▶ Structural assumption: layers are independent ⇒ Fθ̂ is block-diagonal (and hence F−1
θ̂

)

▶ Inverse and product can now be done layer-wise!

If you enjoy figures...

∇θℓi
∇θℓj

Inverse Product

Fθ̂
F−1
θ̂

Inverse Product

Fθ̂

Fθ̂,l
F−1
θ̂

∇θℓi

F−1
θ̂,l

∇θℓj

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 17 / 74

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fθ̂:

▶ Structural assumption: layers are independent ⇒ Fθ̂ is block-diagonal (and hence F−1
θ̂

)

▶ Inverse and product can now be done layer-wise!

If you enjoy figures...

∇θℓi
∇θℓj

Inverse Product

Fθ̂
F−1
θ̂

Inverse Product

Fθ̂

Fθ̂,l
F−1
θ̂

∇θℓi

F−1
θ̂,l

∇θℓj

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 17 / 74

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fθ̂:

▶ Structural assumption: layers are independent ⇒ Fθ̂ is block-diagonal (and hence F−1
θ̂

)

▶ Inverse and product can now be done layer-wise!

If you enjoy figures...

∇θℓi
∇θℓj

Inverse Product

Fθ̂
F−1
θ̂

Inverse Product

Fθ̂

Fθ̂,l
F−1
θ̂

∇θℓi

F−1
θ̂,l

∇θℓj

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 17 / 74

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fθ̂:

▶ Structural assumption: layers are independent ⇒ Fθ̂ is block-diagonal (and hence F−1
θ̂

)

▶ Inverse and product can now be done layer-wise!

If you enjoy figures...

∇θℓi
∇θℓj

Inverse Product

Fθ̂
F−1
θ̂

Inverse Product

Fθ̂

Fθ̂,l
F−1
θ̂

∇θℓi

F−1
θ̂,l

∇θℓj

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 17 / 74

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fθ̂:

▶ Structural assumption: layers are independent ⇒ Fθ̂ is block-diagonal (and hence F−1
θ̂

)

▶ Inverse and product can now be done layer-wise!

If you enjoy figures...

∇θℓi
∇θℓj

Inverse Product

Fθ̂
F−1
θ̂

Inverse Product

Fθ̂

Fθ̂,l
F−1
θ̂

∇θℓi

F−1
θ̂,l

∇θℓj

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 17 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:

▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).

▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :

▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
▶ Computation: vectors + inverse-FIM + product O(np + p3/L2 + np2/L+ np2/L)

▶ Storage: vectors + inverse-FIM O(np + p2/L)

Is this enough? Probably not since p is typically large:

▶ Computation-wise, inverse-FIM takes O(p3/L2).
▶ Storing vectors is challenging: O(np) for 1B model with 1B dataset ≈ 4EB

The main bottleneck now becomes the large p for ∇θℓi :
▶ If we can operate with vectors of dimension k ≪ p

⇒ Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 18 / 74

Table of Content

Introduction

Accelerating iHVP

Small Detour

Hessian Approximation

Gradient Compression

State-of-the-Art Gradient Compression

Experiments

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 19 / 74

Gradient Compression

Intuition (Gradient Compression)

We can compress gi := ∇θℓi ∈ Rp down to g̃i ∈ Rk for some k ≪ p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in Rd , they can be projected to Rk with k = O(log n
ϵ2

) while approximately
preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):2

▶ Compression algorithms that admit JL guarantee can be integrated.

2In our case, we’re considering more complicated operations. See discussion in [Sch+22].
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 20 / 74

Gradient Compression

Intuition (Gradient Compression)

We can compress gi := ∇θℓi ∈ Rp down to g̃i ∈ Rk for some k ≪ p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in Rd , they can be projected to Rk with k = O(log n
ϵ2

) while approximately
preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):2

▶ Compression algorithms that admit JL guarantee can be integrated.

2In our case, we’re considering more complicated operations. See discussion in [Sch+22].
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 20 / 74

Gradient Compression

Intuition (Gradient Compression)

We can compress gi := ∇θℓi ∈ Rp down to g̃i ∈ Rk for some k ≪ p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in Rd , they can be projected to Rk with k = O(log n
ϵ2

) while approximately
preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):2

▶ Compression algorithms that admit JL guarantee can be integrated.

2In our case, we’re considering more complicated operations. See discussion in [Sch+22].
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 20 / 74

Gradient Compression

Intuition (Gradient Compression)

We can compress gi := ∇θℓi ∈ Rp down to g̃i ∈ Rk for some k ≪ p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in Rd , they can be projected to Rk with k = O(log n
ϵ2

) while approximately
preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):2

▶ Compression algorithms that admit JL guarantee can be integrated.

2In our case, we’re considering more complicated operations. See discussion in [Sch+22].
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 20 / 74

Gradient Compression

Intuition (Gradient Compression)

We can compress gi := ∇θℓi ∈ Rp down to g̃i ∈ Rk for some k ≪ p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in Rd , they can be projected to Rk with k = O(log n
ϵ2

) while approximately
preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):2

▶ Compression algorithms that admit JL guarantee can be integrated.

2In our case, we’re considering more complicated operations. See discussion in [Sch+22].
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 20 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;

▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can’t we also apply gradient compression in, say, LiSSA?

The reason is the following:

▶ Previously, the application they consider requires iHVP (read: update parameters with conditioned gradient)

▶ Now, in influence function computation, we take inner product between iHVP and ∇f

Overall,

▶ operating on smaller vectors makes no sense to optimization-related application;
▶ but for us, we can also compress ∇f and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 21 / 74

Random and its Computational Complexity

Example (Gaussian/Rademacher Projection (Random [Woj+16]))

Linear map induced by P ∈ Rk×p with Pij
i.i.d.∼ N (0, 1) or U({±1}) satisfies the JL lemma.

Random states that to compress gi ,l , consider

g̃i ,l = P(l) × gi ,l

for some projection matrix P(l) ∈ Rk/L×p/L that satisfies JL guarantee.

▶ Projection time per gi ,l is O(kp/L2).

In total, for all data points and all layers, Random takes O(npk/L).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 22 / 74

Random and its Computational Complexity

Example (Gaussian/Rademacher Projection (Random [Woj+16]))

Linear map induced by P ∈ Rk×p with Pij
i.i.d.∼ N (0, 1) or U({±1}) satisfies the JL lemma.

Random states that to compress gi ,l , consider

g̃i ,l = P(l) × gi ,l

for some projection matrix P(l) ∈ Rk/L×p/L that satisfies JL guarantee.

▶ Projection time per gi ,l is O(kp/L2).

In total, for all data points and all layers, Random takes O(npk/L).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 22 / 74

Random and its Computational Complexity

Example (Gaussian/Rademacher Projection (Random [Woj+16]))

Linear map induced by P ∈ Rk×p with Pij
i.i.d.∼ N (0, 1) or U({±1}) satisfies the JL lemma.

Random states that to compress gi ,l , consider

g̃i ,l = P(l) × gi ,l

for some projection matrix P(l) ∈ Rk/L×p/L that satisfies JL guarantee.

▶ Projection time per gi ,l is O(kp/L2).

In total, for all data points and all layers, Random takes O(npk/L).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 22 / 74

Random and its Computational Complexity

Example (Gaussian/Rademacher Projection (Random [Woj+16]))

Linear map induced by P ∈ Rk×p with Pij
i.i.d.∼ N (0, 1) or U({±1}) satisfies the JL lemma.

Random states that to compress gi ,l , consider

g̃i ,l = P(l) × gi ,l

for some projection matrix P(l) ∈ Rk/L×p/L that satisfies JL guarantee.

▶ Projection time per gi ,l is O(kp/L2).

In total, for all data points and all layers, Random takes O(npk/L).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 22 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)

▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

To put everything together:

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: Random with matrix multiplication implementation O(npk/L)
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 23 / 74

Putting Everything Together: Random

F̃θ̂

F̃θ̂,l

F̃−1
θ̂

F̃−1
θ̂,l

g̃i
g̃i

...

g̃i ,1

g̃i ,2

g̃i ,l

g̃i ,L

...

gi ,1

...

gi ,2

gi ,l

...

gi ,L

Random(1)

Random(2)

Random(L)

Random(l)

gi

Stage 0 Stage 1 Stage 2

g̃i

vectors Compressed vectors iFVP

FIM

Backward

O(np) O(npk/L)

O(k3/L2)
O(nk

2

L)
Inverse

Product

Forward zi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 24 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch

▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.

▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Overhead of Gradient Compression
As previously seen (Computation Cost)

1. Random with matrix multiplication implementation O(npk/L)

2. vectors + inverse-FIM + product O(np + k3/L2 + nk2/L)

To provide some context:

▶ O(np) for vectors is roughly one training epoch
▶ Per-layer projection dimension is typically k/L ≈ 4096.
▶ Overhead of Random is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 25 / 74

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

▶ Compress vectors faster than matrix multiplication (i.e., Random)
▶ One alternative: fast Johnson-Lindenstrauss transform!3

FJLT leverages discrete Fast Fourier Transform (FFT):

▶ Projection time per gi ,l can be reduced from O(kp/L2) to O(p+k
L log p).

In total, for all data points and all layers, FJLT takes O(n(p + k) log p)

Remark
It’s roughly the same for one training epoch!

3This is also used in TRAK’s implementation (https://github.com/MadryLab/trak).
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 26 / 74

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

▶ Compress vectors faster than matrix multiplication (i.e., Random)

▶ One alternative: fast Johnson-Lindenstrauss transform!3

FJLT leverages discrete Fast Fourier Transform (FFT):

▶ Projection time per gi ,l can be reduced from O(kp/L2) to O(p+k
L log p).

In total, for all data points and all layers, FJLT takes O(n(p + k) log p)

Remark
It’s roughly the same for one training epoch!

3This is also used in TRAK’s implementation (https://github.com/MadryLab/trak).
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 26 / 74

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

▶ Compress vectors faster than matrix multiplication (i.e., Random)
▶ One alternative: fast Johnson-Lindenstrauss transform!3

FJLT leverages discrete Fast Fourier Transform (FFT):

▶ Projection time per gi ,l can be reduced from O(kp/L2) to O(p+k
L log p).

In total, for all data points and all layers, FJLT takes O(n(p + k) log p)

Remark
It’s roughly the same for one training epoch!

3This is also used in TRAK’s implementation (https://github.com/MadryLab/trak).
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 26 / 74

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

▶ Compress vectors faster than matrix multiplication (i.e., Random)
▶ One alternative: fast Johnson-Lindenstrauss transform!3

FJLT leverages discrete Fast Fourier Transform (FFT):

▶ Projection time per gi ,l can be reduced from O(kp/L2) to O(p+k
L log p).

In total, for all data points and all layers, FJLT takes O(n(p + k) log p)

Remark
It’s roughly the same for one training epoch!

3This is also used in TRAK’s implementation (https://github.com/MadryLab/trak).
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 26 / 74

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

▶ Compress vectors faster than matrix multiplication (i.e., Random)
▶ One alternative: fast Johnson-Lindenstrauss transform!3

FJLT leverages discrete Fast Fourier Transform (FFT):

▶ Projection time per gi ,l can be reduced from O(kp/L2) to O(p+k
L log p).

In total, for all data points and all layers, FJLT takes O(n(p + k) log p)

Remark
It’s roughly the same for one training epoch!

3This is also used in TRAK’s implementation (https://github.com/MadryLab/trak).
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 26 / 74

https://github.com/MadryLab/trak

Putting Everything Together: FJLT

F̃θ̂

F̃θ̂,l

F̃−1
θ̂

F̃−1
θ̂,l

g̃i
g̃i

...

g̃i ,1

g̃i ,2

g̃i ,l

g̃i ,L

...

gi ,1

...

gi ,2

gi ,l

...

gi ,L

FJLT(1)

FJLT(2)

FJLT(L)

FJLT(l)

gi

Stage 0 Stage 1 Stage 2

g̃i

vectors Compressed vectors iFVP

FIM

Backward

O(np) O(n(p + k)logp)

O(k3/L2)
O(nk

2

L)
Inverse

Product

Forward zi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 27 / 74

Table of Content
Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

GraSS

Linear Layers

LoGra

Factorized GraSS

Experiments

References
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 28 / 74

Investigating Random

In Random, with a Rademacher projection matrix P(l):

▶ Dense Matrix: Each entry of P(l) is sampled i.i.d. from U({±1}).

▶ Matrix multiplication takes O(kp/L2) per gi ,l :

k/L× p/L

p/L

P(l)

=

gi ,l× =

. . .

...

= × + · · ·+ ×

P
(l)
: 1 × (gi ,l)1 + · · ·+ P

(l)
: p/L × (gi ,l)p/L

1 −1

=

k/L

g̃i ,l=

×

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 29 / 74

Investigating Random

In Random, with a Rademacher projection matrix P(l):

▶ Dense Matrix: Each entry of P(l) is sampled i.i.d. from U({±1}).
▶ Matrix multiplication takes O(kp/L2) per gi ,l :

k/L× p/L

p/L

P(l)

=

gi ,l× =

. . .

...

= × + · · ·+ ×

P
(l)
: 1 × (gi ,l)1 + · · ·+ P

(l)
: p/L × (gi ,l)p/L

1 −1

=

k/L

g̃i ,l=

×

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 29 / 74

Investigating Random

In Random, with a Rademacher projection matrix P(l):

▶ Dense Matrix: Each entry of P(l) is sampled i.i.d. from U({±1}).
▶ Matrix multiplication takes O(kp/L2) per gi ,l :

k/L× p/L

p/L

P(l)

=

gi ,l× =

. . .

...

= × + · · ·+ ×

P
(l)
: 1 × (gi ,l)1 + · · ·+ P

(l)
: p/L × (gi ,l)p/L

1 −1

=

k/L

g̃i ,l=

×

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 29 / 74

Sparser Johnson-Lindenstrauss Transform

Sparse Johnson-Lindenstrauss transform [DKS10; KN14] considers a sparser P(l) instead:

▶ Sparse Matrix: For every column of P(l), only choose s ≪ k/L elements to be non-zero.

▶ SJLT takes only O(s · p/L) = O(p/L) per gi ,l , proportional to input size.

k/L× p/L

p/L

P(l)

=

gi ,l× =

. . .

...

= × + · · ·+ ×

P
(l)
: 1 × (gi ,l)1 + · · ·+ P

(l)
: p/L × (gi ,l)p/L

1 −1

=

k/L

g̃i ,l=

×

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 30 / 74

Sparser Johnson-Lindenstrauss Transform

Sparse Johnson-Lindenstrauss transform [DKS10; KN14] considers a sparser P(l) instead:

▶ Sparse Matrix: For every column of P(l), only choose s ≪ k/L elements to be non-zero.
▶ SJLT takes only O(s · p/L) = O(p/L) per gi ,l , proportional to input size.

k/L× p/L

p/L

P(l)

=

gi ,l× =

. . .

...

= × + · · ·+ ×

P
(l)
: 1 × (gi ,l)1 + · · ·+ P

(l)
: p/L × (gi ,l)p/L

1 −1

=

k/L

g̃i ,l=

×

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 30 / 74

Sparser Johnson-Lindenstrauss Transform

Sparse Johnson-Lindenstrauss transform [DKS10; KN14] considers a sparser P(l) instead:

▶ Sparse Matrix: For every column of P(l), only choose s ≪ k/L elements to be non-zero.
▶ SJLT takes only O(s · p/L) = O(p/L) per gi ,l , proportional to input size.

k/L× p/L

p/L

P(l)

=

gi ,l× =

. . .

...

= × + · · ·+ ×

P
(l)
: 1 × (gi ,l)1 + · · ·+ P

(l)
: p/L × (gi ,l)p/L

1 −1

=

k/L

g̃i ,l=

×

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 30 / 74

SJLT: Alternative Viewpoint

Equivalently, you can think about SJLT as follows:

gi ,l g̃i ,l

×1

×− 1

k/L

p/L

...

Intuition
For each entry of gi ,l , we select s entries in g̃i ,l to add on (or subtract from, depending on ±1).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 31 / 74

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:

▶ Per gi ,l cost reduced from O(p+k
L log p) to O(p/L):

▶ In total, from O(n(p + k) log p) to O(np).

Remark (Potential speedup)
SJLT exploits input sparsity, each runs only in O(nnz(gi ,l)).
▶ Potentially, SJLT can run faster than O(np) in total.

k

10 3

10 2

Pr
oj

ec
tio

n
Ti

m
e

(s
)

Projection Time (s)

102 103 104

k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Relative Error

Gaussian SJLT

p = 131,072 on several sparsity levels4

4https://github.com/TRAIS-Lab/sjlt/tree/main
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 32 / 74

https://github.com/TRAIS-Lab/sjlt/tree/main

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:
▶ Per gi ,l cost reduced from O(p+k

L log p) to O(p/L):

▶ In total, from O(n(p + k) log p) to O(np).

Remark (Potential speedup)
SJLT exploits input sparsity, each runs only in O(nnz(gi ,l)).
▶ Potentially, SJLT can run faster than O(np) in total.

k

10 3

10 2

Pr
oj

ec
tio

n
Ti

m
e

(s
)

Projection Time (s)

102 103 104

k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Relative Error

Gaussian SJLT

p = 131,072 on several sparsity levels4

4https://github.com/TRAIS-Lab/sjlt/tree/main
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 32 / 74

https://github.com/TRAIS-Lab/sjlt/tree/main

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:
▶ Per gi ,l cost reduced from O(p+k

L log p) to O(p/L):
▶ In total, from O(n(p + k) log p) to O(np).

Remark (Potential speedup)
SJLT exploits input sparsity, each runs only in O(nnz(gi ,l)).
▶ Potentially, SJLT can run faster than O(np) in total.

k

10 3

10 2

Pr
oj

ec
tio

n
Ti

m
e

(s
)

Projection Time (s)

102 103 104

k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Relative Error

Gaussian SJLT

p = 131,072 on several sparsity levels4

4https://github.com/TRAIS-Lab/sjlt/tree/main
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 32 / 74

https://github.com/TRAIS-Lab/sjlt/tree/main

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:
▶ Per gi ,l cost reduced from O(p+k

L log p) to O(p/L):
▶ In total, from O(n(p + k) log p) to O(np).

Remark (Potential speedup)
SJLT exploits input sparsity, each runs only in O(nnz(gi ,l)).
▶ Potentially, SJLT can run faster than O(np) in total.

k

10 3

10 2

Pr
oj

ec
tio

n
Ti

m
e

(s
)

Projection Time (s)

102 103 104

k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Relative Error

Gaussian SJLT

p = 131,072 on several sparsity levels4

4https://github.com/TRAIS-Lab/sjlt/tree/main
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 32 / 74

https://github.com/TRAIS-Lab/sjlt/tree/main

Sub-Linear Compression

It seems like we can’t go faster, as we need to read through the input at least?

▶ Wrong! We can throw out (some) information!

Compression via selecting a few parameters (⇔ masking out most parameters):

Intuition
Instead of “compress everything succinctly,” we select a few parameters to look at.

▶ In the literature, people find out that only a few parameters are important for “inference”
▶ Idea of localization emerges [He+25; Yad+23; Wan+24].
▶ Used for task merging, sparsification, etc.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 33 / 74

Sub-Linear Compression

It seems like we can’t go faster, as we need to read through the input at least?

▶ Wrong! We can throw out (some) information!

Compression via selecting a few parameters (⇔ masking out most parameters):

Intuition
Instead of “compress everything succinctly,” we select a few parameters to look at.

▶ In the literature, people find out that only a few parameters are important for “inference”
▶ Idea of localization emerges [He+25; Yad+23; Wan+24].
▶ Used for task merging, sparsification, etc.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 33 / 74

Sub-Linear Compression

It seems like we can’t go faster, as we need to read through the input at least?

▶ Wrong! We can throw out (some) information!

Compression via selecting a few parameters (⇔ masking out most parameters):

Intuition
Instead of “compress everything succinctly,” we select a few parameters to look at.

▶ In the literature, people find out that only a few parameters are important for “inference”
▶ Idea of localization emerges [He+25; Yad+23; Wan+24].
▶ Used for task merging, sparsification, etc.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 33 / 74

Sub-Linear Compression

It seems like we can’t go faster, as we need to read through the input at least?

▶ Wrong! We can throw out (some) information!

Compression via selecting a few parameters (⇔ masking out most parameters):

Intuition
Instead of “compress everything succinctly,” we select a few parameters to look at.

▶ In the literature, people find out that only a few parameters are important for “inference”
▶ Idea of localization emerges [He+25; Yad+23; Wan+24].
▶ Used for task merging, sparsification, etc.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 33 / 74

Sub-Linear Compression

It seems like we can’t go faster, as we need to read through the input at least?

▶ Wrong! We can throw out (some) information!

Compression via selecting a few parameters (⇔ masking out most parameters):

Intuition
Instead of “compress everything succinctly,” we select a few parameters to look at.

▶ In the literature, people find out that only a few parameters are important for “inference”
▶ Idea of localization emerges [He+25; Yad+23; Wan+24].
▶ Used for task merging, sparsification, etc.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 33 / 74

Mask

We call this Mask:

▶ By neglecting the information, we get a further speedup.
▶ Mask takes only O(k/L) per gi ,l , proportional to output size.

gi ,l g̃i ,l

k/L

p/L

...

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 34 / 74

Mask

We call this Mask:

▶ By neglecting the information, we get a further speedup.

▶ Mask takes only O(k/L) per gi ,l , proportional to output size.

gi ,l g̃i ,l

k/L

p/L

...

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 34 / 74

Mask

We call this Mask:

▶ By neglecting the information, we get a further speedup.
▶ Mask takes only O(k/L) per gi ,l , proportional to output size.

gi ,l g̃i ,l

k/L

p/L

...

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 34 / 74

Mask

We call this Mask:

▶ By neglecting the information, we get a further speedup.
▶ Mask takes only O(k/L) per gi ,l , proportional to output size.

gi ,l g̃i ,l

k/L

p/L

...

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 34 / 74

Computational Complexity of Mask

Mask only depends on output dimension k/L:

▶ Per gi ,l cost reduced from O(p/L) to O(k/L):
▶ In total, from O(np) to O(nk).

Remark
We finally achieve sub-linear compression:
▶ To compress, we don’t even need to read through all the input!
▶ Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem
In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 35 / 74

Computational Complexity of Mask

Mask only depends on output dimension k/L:

▶ Per gi ,l cost reduced from O(p/L) to O(k/L):
▶ In total, from O(np) to O(nk).

Remark
We finally achieve sub-linear compression:
▶ To compress, we don’t even need to read through all the input!
▶ Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem
In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 35 / 74

Computational Complexity of Mask

Mask only depends on output dimension k/L:

▶ Per gi ,l cost reduced from O(p/L) to O(k/L):
▶ In total, from O(np) to O(nk).

Remark
We finally achieve sub-linear compression:

▶ To compress, we don’t even need to read through all the input!
▶ Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem
In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 35 / 74

Computational Complexity of Mask

Mask only depends on output dimension k/L:

▶ Per gi ,l cost reduced from O(p/L) to O(k/L):
▶ In total, from O(np) to O(nk).

Remark
We finally achieve sub-linear compression:
▶ To compress, we don’t even need to read through all the input!

▶ Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem
In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 35 / 74

Computational Complexity of Mask

Mask only depends on output dimension k/L:

▶ Per gi ,l cost reduced from O(p/L) to O(k/L):
▶ In total, from O(np) to O(nk).

Remark
We finally achieve sub-linear compression:
▶ To compress, we don’t even need to read through all the input!
▶ Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem
In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 35 / 74

Computational Complexity of Mask

Mask only depends on output dimension k/L:

▶ Per gi ,l cost reduced from O(p/L) to O(k/L):
▶ In total, from O(np) to O(nk).

Remark
We finally achieve sub-linear compression:
▶ To compress, we don’t even need to read through all the input!
▶ Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem
In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 35 / 74

Situation Now

We now have two candidates, SJLT and Mask:

gi ,l g̃i ,l

×1
×− 1

k/L

p/L

... gi ,l g̃i ,l

k/L

p/L

...

SJLT Mask

Problem (Pros and Cons)
▶ SJLT: Very good compression guarantees, but cost ∝ input dimension.
▶ Mask: Extremely fast with cost ∝ output dimension, but will lose a lot of information.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 36 / 74

Situation Now

We now have two candidates, SJLT and Mask:

gi ,l g̃i ,l

×1
×− 1

k/L

p/L

... gi ,l g̃i ,l

k/L

p/L

...

SJLT Mask

Problem (Pros and Cons)
▶ SJLT: Very good compression guarantees, but cost ∝ input dimension.

▶ Mask: Extremely fast with cost ∝ output dimension, but will lose a lot of information.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 36 / 74

Situation Now

We now have two candidates, SJLT and Mask:

gi ,l g̃i ,l

×1
×− 1

k/L

p/L

... gi ,l g̃i ,l

k/L

p/L

...

SJLT Mask

Problem (Pros and Cons)
▶ SJLT: Very good compression guarantees, but cost ∝ input dimension.
▶ Mask: Extremely fast with cost ∝ output dimension, but will lose a lot of information.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 36 / 74

GraSS: Best of both Worlds

p/L

k ′/L

×1
×− 1

...

gi ,l

k/L

g̃i ,l

Mask

SJLT

Intuition
First Mask to a moderate dimension k ′/L, then SJLT to the final dimension k/L!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 37 / 74

Computational Complexity of GraSS

We term this method as GraSS: Gradient Sparsification and Sparse projection.

▶ Sparsification: Mask to an intermediate dimension k ′/L with k < k ′ ≪ p

▶ Sparse projection: SJLT the sparsified vector of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

▶ Mask: cost ∝ output dimension, O(k ′/L)

▶ SJLT: cost ∝ input dimension, O(k ′/L)

⇒ Together takes O(k ′/L+ k ′/L) = O(k ′/L)

In total, for all data points and all layers, GraSS takes O(nk ′).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 38 / 74

Computational Complexity of GraSS

We term this method as GraSS: Gradient Sparsification and Sparse projection.

▶ Sparsification: Mask to an intermediate dimension k ′/L with k < k ′ ≪ p

▶ Sparse projection: SJLT the sparsified vector of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

▶ Mask: cost ∝ output dimension, O(k ′/L)

▶ SJLT: cost ∝ input dimension, O(k ′/L)

⇒ Together takes O(k ′/L+ k ′/L) = O(k ′/L)

In total, for all data points and all layers, GraSS takes O(nk ′).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 38 / 74

Computational Complexity of GraSS

We term this method as GraSS: Gradient Sparsification and Sparse projection.

▶ Sparsification: Mask to an intermediate dimension k ′/L with k < k ′ ≪ p

▶ Sparse projection: SJLT the sparsified vector of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

▶ Mask: cost ∝ output dimension, O(k ′/L)

▶ SJLT: cost ∝ input dimension, O(k ′/L)

⇒ Together takes O(k ′/L+ k ′/L) = O(k ′/L)

In total, for all data points and all layers, GraSS takes O(nk ′).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 38 / 74

Computational Complexity of GraSS

We term this method as GraSS: Gradient Sparsification and Sparse projection.

▶ Sparsification: Mask to an intermediate dimension k ′/L with k < k ′ ≪ p

▶ Sparse projection: SJLT the sparsified vector of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

▶ Mask: cost ∝ output dimension, O(k ′/L)

▶ SJLT: cost ∝ input dimension, O(k ′/L)

⇒ Together takes O(k ′/L+ k ′/L) = O(k ′/L)

In total, for all data points and all layers, GraSS takes O(nk ′).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 38 / 74

Computational Complexity of GraSS

We term this method as GraSS: Gradient Sparsification and Sparse projection.

▶ Sparsification: Mask to an intermediate dimension k ′/L with k < k ′ ≪ p

▶ Sparse projection: SJLT the sparsified vector of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

▶ Mask: cost ∝ output dimension, O(k ′/L)

▶ SJLT: cost ∝ input dimension, O(k ′/L)

⇒ Together takes O(k ′/L+ k ′/L) = O(k ′/L)

In total, for all data points and all layers, GraSS takes O(nk ′).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 38 / 74

Computational Complexity of GraSS

We term this method as GraSS: Gradient Sparsification and Sparse projection.

▶ Sparsification: Mask to an intermediate dimension k ′/L with k < k ′ ≪ p

▶ Sparse projection: SJLT the sparsified vector of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

▶ Mask: cost ∝ output dimension, O(k ′/L)

▶ SJLT: cost ∝ input dimension, O(k ′/L)

⇒ Together takes O(k ′/L+ k ′/L) = O(k ′/L)

In total, for all data points and all layers, GraSS takes O(nk ′).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 38 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)

▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together Again

Let’s put everything together again, this time with GraSS.

Stage 0: Compute all per-sample gradients gi ∈ Rp

▶ Computation: Forward/Backward passes for vectors O(np)
▶ Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed gi ,l ∈ Rp/L down to g̃i ,l ∈ Rk/L, giving g̃i ∈ Rk .

▶ Computation: GraSS takes O(nk ′) for some k ′ such that k < k ′ ≪ p.
▶ Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g̃i :

▶ Computation: inverse-FIM + product O(k3/L2 + nk2/L)
▶ Storage: inverse-FIM O(k2/L)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 39 / 74

Putting Everything Together: GraSS

F̃θ̂

F̃θ̂,l

F̃−1
θ̂

F̃−1
θ̂,l

g̃i
g̃i

...

g̃i ,1

g̃i ,2

g̃i ,l

g̃i ,L

...

gi ,1

...

gi ,2

gi ,l

...

gi ,L

GraSS(1)

GraSS(2)

GraSS(L)

GraSS(l)

gi

Stage 0 Stage 1 Stage 2

g̃i

vectors Compressed vectors iFVP

FIM

Backward

O(np) O(nk ′)

O(k3/L2)
O(nk

2

L)
Inverse

Product

Forward zi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 40 / 74

Table of Content
Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

GraSS

Linear Layers

LoGra

Factorized GraSS

Experiments

References
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 41 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)
▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation
▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)

▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation
▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)
▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation
▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)
▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation
▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)
▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation

▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)
▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation
▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Why Linear Layers?

In modern model architectures:

▶ Linear layers usually contain most of the parameters (since it is dense)
▶ Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

▶ K-FAC [MG15], EK-FAC [Gro+23]: factorized FIM computation
▶ Ghost Inner Product [Wan+25a]: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let’s first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 42 / 74

Gradient of One Linear Layer

We now take a closer look at linear layers.

▶ Consider a model with only one linear layer (i.e., logistic regression)
▶ Let the weight be W , with activation σ(·)

The forward pass is:
zout
i = W · zi , zpred

i = σ(zout
i)

From chain rule, the backward pass is

∂ℓi
∂zout

i

=
∂ℓi

∂zpred
i

⊙
∂zpred

i

∂zout
i

=
∂ℓi

∂zpred
i

⊙ σ′(zout
i),

∂ℓi
∂zi

= W⊤ ∂ℓi
∂zout

i

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 43 / 74

Gradient of One Linear Layer

We now take a closer look at linear layers.

▶ Consider a model with only one linear layer (i.e., logistic regression)
▶ Let the weight be W , with activation σ(·)

The forward pass is:
zout
i = W · zi , zpred

i = σ(zout
i)

From chain rule, the backward pass is

∂ℓi
∂zout

i

=
∂ℓi

∂zpred
i

⊙
∂zpred

i

∂zout
i

=
∂ℓi

∂zpred
i

⊙ σ′(zout
i),

∂ℓi
∂zi

= W⊤ ∂ℓi
∂zout

i

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 43 / 74

Gradient of One Linear Layer

We now take a closer look at linear layers.

▶ Consider a model with only one linear layer (i.e., logistic regression)
▶ Let the weight be W , with activation σ(·)

The forward pass is:
zout
i = W · zi , zpred

i = σ(zout
i)

From chain rule, the backward pass is

∂ℓi
∂zout

i

=
∂ℓi

∂zpred
i

⊙
∂zpred

i

∂zout
i

=
∂ℓi

∂zpred
i

⊙ σ′(zout
i),

∂ℓi
∂zi

= W⊤ ∂ℓi
∂zout

i

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 43 / 74

Gradient of One Linear Layer

We now take a closer look at linear layers.

▶ Consider a model with only one linear layer (i.e., logistic regression)
▶ Let the weight be W , with activation σ(·)

The forward pass is:
zout
i = W · zi , zpred

i = σ(zout
i)

From chain rule, the backward pass is

∂ℓi
∂zout

i

=
∂ℓi

∂zpred
i

⊙
∂zpred

i

∂zout
i

=
∂ℓi

∂zpred
i

⊙ σ′(zout
i),

∂ℓi
∂zi

= W⊤ ∂ℓi
∂zout

i

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 43 / 74

Gradient of One Linear Layer

W =

zout
i

Forward Pass Backward Pass

σ(·)

zi = ∂ℓi
∂zout

i

∂ℓi
∂zi

W

zout
i = W · zi , zpred

i = σ(zout
i) ∂ℓi

∂zout
i

= ∂ℓi
∂zpred

i

⊙ σ′(zout
i), ∂ℓi

∂zi
= W⊤ ∂ℓi

∂zout
i

zpred

σ′(·)

∂ℓi
∂zpred

i

Remark
What we actually want is gi :

gi =
∂ℓi
∂W

=
∂ℓi
∂zout

i

∂zout
i

∂W
= zi ⊗

∂ℓi
∂zout

i

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 44 / 74

Gradient of One Linear Layer

W =

zout
i

Forward Pass Backward Pass

σ(·)

zi = ∂ℓi
∂zout

i

∂ℓi
∂zi

W

zout
i = W · zi , zpred

i = σ(zout
i) ∂ℓi

∂zout
i

= ∂ℓi
∂zpred

i

⊙ σ′(zout
i), ∂ℓi

∂zi
= W⊤ ∂ℓi

∂zout
i

zpred

σ′(·)

∂ℓi
∂zpred

i

Remark
What we actually want is gi :

gi =
∂ℓi
∂W

=
∂ℓi
∂zout

i

∂zout
i

∂W
= zi ⊗

∂ℓi
∂zout

i

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 44 / 74

Gradient of An Linear Layer

Now, let’s consider linear layers in a deeper model:

▶ Consider a model with L linear layers (i.e., deep MLP)
▶ For the l th linear layer, let the weight be Wl with activation σ(·)

The forward pass is
zout
i ,l = Wl · z in

i ,l , z in
i ,l+1 = σ(zout

i ,l)

From the chain rule, the backward pass is

∂ℓi
∂zout

i ,l

=
∂ℓi

∂z in
i ,l+1

⊙
∂z in

i ,l+1

∂zout
i ,l

=
∂ℓi

∂z in
i ,l+1

⊙ σ′(zout
i ,l),

∂ℓi

∂z in
i ,l

= W⊤
l

∂ℓi
∂zout

i ,l

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 45 / 74

Gradient of An Linear Layer

Now, let’s consider linear layers in a deeper model:

▶ Consider a model with L linear layers (i.e., deep MLP)
▶ For the l th linear layer, let the weight be Wl with activation σ(·)

The forward pass is
zout
i ,l = Wl · z in

i ,l , z in
i ,l+1 = σ(zout

i ,l)

From the chain rule, the backward pass is

∂ℓi
∂zout

i ,l

=
∂ℓi

∂z in
i ,l+1

⊙
∂z in

i ,l+1

∂zout
i ,l

=
∂ℓi

∂z in
i ,l+1

⊙ σ′(zout
i ,l),

∂ℓi

∂z in
i ,l

= W⊤
l

∂ℓi
∂zout

i ,l

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 45 / 74

Gradient of An Linear Layer

Now, let’s consider linear layers in a deeper model:

▶ Consider a model with L linear layers (i.e., deep MLP)
▶ For the l th linear layer, let the weight be Wl with activation σ(·)

The forward pass is
zout
i ,l = Wl · z in

i ,l , z in
i ,l+1 = σ(zout

i ,l)

From the chain rule, the backward pass is

∂ℓi
∂zout

i ,l

=
∂ℓi

∂z in
i ,l+1

⊙
∂z in

i ,l+1

∂zout
i ,l

=
∂ℓi

∂z in
i ,l+1

⊙ σ′(zout
i ,l),

∂ℓi

∂z in
i ,l

= W⊤
l

∂ℓi
∂zout

i ,l

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 45 / 74

Gradient of An Linear Layer

Now, let’s consider linear layers in a deeper model:

▶ Consider a model with L linear layers (i.e., deep MLP)
▶ For the l th linear layer, let the weight be Wl with activation σ(·)

The forward pass is
zout
i ,l = Wl · z in

i ,l , z in
i ,l+1 = σ(zout

i ,l)

From the chain rule, the backward pass is

∂ℓi
∂zout

i ,l

=
∂ℓi

∂z in
i ,l+1

⊙
∂z in

i ,l+1

∂zout
i ,l

=
∂ℓi

∂z in
i ,l+1

⊙ σ′(zout
i ,l),

∂ℓi

∂z in
i ,l

= W⊤
l

∂ℓi
∂zout

i ,l

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 45 / 74

Gradient of An Linear Layer

Wl =

zout
i ,l

Forward Pass Backward Pass

=

σ(·)

z in
i ,l

Wl+1

z in
i ,l+1

σ′(·)

∂ℓi
∂zout

i,l

∂ℓi
∂z in

i,l+1

∂ℓi
∂z in

i,l

Wl

Wl+1

zout
i ,l = Wl · z in

i ,l , z in
i ,l+1 = σ(zout

i ,l) ∂ℓi
∂zout

i,l
= ∂ℓi

∂z in
i,l+1

⊙ σ′(zout
i ,l), ∂ℓi

∂z in
i,l

= W⊤
l

∂ℓi
∂zout

i,l

=

=

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 46 / 74

Materializing Gradients

Remark
What we actually want:

gi ,l =
∂ℓi
∂Wl

=
∂ℓi
∂zout

i ,l

∂zout
i ,l

∂Wl
= z in

i ,l ⊗
∂ℓi
∂zout

i ,l

We should now see the problem:

Problem
In the computational graph, we never materialize gi ,l .

Hence, our previous analysis neglects the cost of computing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 47 / 74

Materializing Gradients

Remark
What we actually want:

gi ,l =
∂ℓi
∂Wl

=
∂ℓi
∂zout

i ,l

∂zout
i ,l

∂Wl
= z in

i ,l ⊗
∂ℓi
∂zout

i ,l

We should now see the problem:

Problem
In the computational graph, we never materialize gi ,l .

Hence, our previous analysis neglects the cost of computing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 47 / 74

Materializing Gradients

Remark
What we actually want:

gi ,l =
∂ℓi
∂Wl

=
∂ℓi
∂zout

i ,l

∂zout
i ,l

∂Wl
= z in

i ,l ⊗
∂ℓi
∂zout

i ,l

We should now see the problem:

Problem
In the computational graph, we never materialize gi ,l .

Hence, our previous analysis neglects the cost of computing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 47 / 74

Materializing Gradients

Forward Pass Backward Pass

gi ,l

Materialize
Per-layer Gradient

Compression

g̃i ,l

⊗Wl =

zout
i ,l

z in
i ,l

∂ℓi
∂z in

i,l

Wl

.

gi ,l = z in
i ,l ⊗

∂ℓi
∂zout

i,l
= ∂ℓi

∂zout
i,l

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 48 / 74

Cost of Materializing Gradients

Assuming Wl is roughly square:

▶ Both z in
i ,l and ∂ℓi/∂z

out
i ,l are roughly of dimension

√
p/L

▶ z in
i ,l ⊗ ∂ℓi/∂zout

i,l costs O(
√
p/L

2
) = O(p/L)

▶ Overall, it’ll take O(np)...

Remark
Even if GraSS takes only O(nk ′) ≪ O(np), once we materialize gi ,l , it’ll take O(np).

However, is this really a concern?

▶ I mean, how can you compress gi ,l without materializing it?
▶ Seems like this O(np) cost will lay in the background and we can’t get rid of?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 49 / 74

Cost of Materializing Gradients

Assuming Wl is roughly square:

▶ Both z in
i ,l and ∂ℓi/∂z

out
i ,l are roughly of dimension

√
p/L

▶ z in
i ,l ⊗ ∂ℓi/∂zout

i,l costs O(
√
p/L

2
) = O(p/L)

▶ Overall, it’ll take O(np)...

Remark
Even if GraSS takes only O(nk ′) ≪ O(np), once we materialize gi ,l , it’ll take O(np).

However, is this really a concern?

▶ I mean, how can you compress gi ,l without materializing it?
▶ Seems like this O(np) cost will lay in the background and we can’t get rid of?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 49 / 74

Cost of Materializing Gradients

Assuming Wl is roughly square:

▶ Both z in
i ,l and ∂ℓi/∂z

out
i ,l are roughly of dimension

√
p/L

▶ z in
i ,l ⊗ ∂ℓi/∂zout

i,l costs O(
√
p/L

2
) = O(p/L)

▶ Overall, it’ll take O(np)...

Remark
Even if GraSS takes only O(nk ′) ≪ O(np), once we materialize gi ,l , it’ll take O(np).

However, is this really a concern?

▶ I mean, how can you compress gi ,l without materializing it?
▶ Seems like this O(np) cost will lay in the background and we can’t get rid of?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 49 / 74

Cost of Materializing Gradients

Assuming Wl is roughly square:

▶ Both z in
i ,l and ∂ℓi/∂z

out
i ,l are roughly of dimension

√
p/L

▶ z in
i ,l ⊗ ∂ℓi/∂zout

i,l costs O(
√
p/L

2
) = O(p/L)

▶ Overall, it’ll take O(np)...

Remark
Even if GraSS takes only O(nk ′) ≪ O(np), once we materialize gi ,l , it’ll take O(np).

However, is this really a concern?

▶ I mean, how can you compress gi ,l without materializing it?
▶ Seems like this O(np) cost will lay in the background and we can’t get rid of?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 49 / 74

Cost of Materializing Gradients

Assuming Wl is roughly square:

▶ Both z in
i ,l and ∂ℓi/∂z

out
i ,l are roughly of dimension

√
p/L

▶ z in
i ,l ⊗ ∂ℓi/∂zout

i,l costs O(
√
p/L

2
) = O(p/L)

▶ Overall, it’ll take O(np)...

Remark
Even if GraSS takes only O(nk ′) ≪ O(np), once we materialize gi ,l , it’ll take O(np).

However, is this really a concern?

▶ I mean, how can you compress gi ,l without materializing it?
▶ Seems like this O(np) cost will lay in the background and we can’t get rid of?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 49 / 74

Putting Everything Together for Linear Layers

F̃θ̂

F̃θ̂,l

F̃−1
θ̂

F̃−1
θ̂,l

g̃i
g̃i

...

g̃i ,1

g̃i ,2

g̃i ,l

g̃i ,L

...

gi ,1

...

gi ,2

gi ,l

...

gi ,L

P(1)

P(2)

P(L)

P(l)

gi

Stage 0 Stage 1 Stage 2

g̃i

vectors Compressed vectors iFVP

FIM

Backward

O(np) O(np)

O(k3/L2)
O(nk

2

L)
Inverse

Product

Stage 0.9

Materialize
Gradient

Preparation

Forward zi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 50 / 74

Table of Content
Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

GraSS

Linear Layers

LoGra

Factorized GraSS

Experiments

References
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 51 / 74

Final Boss: LoGra

Sadly, the reality is always harsh:

Theorem (LoGra)

There is a gradient compression algorithm that does not require materializing gi ,l (for MLP layer).5

Intuition
To compress gi ,l , just compress the components individually:

P(l)gi ,l := (P
(l)
in ⊗ P

(l)
out) ·

(
z in
i ,l ⊗

∂ℓi
∂zout

i ,l

)
= (P

(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

▶ Allocating k/L equally ⇒ target dimension for both is
√
k/L

5It is worth noting that from [Wan+25a], the calculation can even be batched.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 52 / 74

Final Boss: LoGra

Sadly, the reality is always harsh:

Theorem (LoGra)

There is a gradient compression algorithm that does not require materializing gi ,l (for MLP layer).5

Intuition
To compress gi ,l , just compress the components individually:

P(l)gi ,l := (P
(l)
in ⊗ P

(l)
out) ·

(
z in
i ,l ⊗

∂ℓi
∂zout

i ,l

)
= (P

(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

▶ Allocating k/L equally ⇒ target dimension for both is
√
k/L

5It is worth noting that from [Wan+25a], the calculation can even be batched.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 52 / 74

Final Boss: LoGra

Sadly, the reality is always harsh:

Theorem (LoGra)

There is a gradient compression algorithm that does not require materializing gi ,l (for MLP layer).5

Intuition
To compress gi ,l , just compress the components individually:

P(l)gi ,l := (P
(l)
in ⊗ P

(l)
out) ·

(
z in
i ,l ⊗

∂ℓi
∂zout

i ,l

)
= (P

(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

▶ Allocating k/L equally ⇒ target dimension for both is
√

k/L

5It is worth noting that from [Wan+25a], the calculation can even be batched.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 52 / 74

Final Boss: LoGra

Sadly, the reality is always harsh:

Theorem (LoGra)

There is a gradient compression algorithm that does not require materializing gi ,l (for MLP layer).5

Intuition
To compress gi ,l , just compress the components individually:

P(l)gi ,l := (P
(l)
in ⊗ P

(l)
out) ·

(
z in
i ,l ⊗

∂ℓi
∂zout

i ,l

)
= (P

(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

▶ Allocating k/L equally ⇒ target dimension for both is
√

k/L

5It is worth noting that from [Wan+25a], the calculation can even be batched.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 52 / 74

Final Boss: LoGra

Sadly, the reality is always harsh:

Theorem (LoGra)

There is a gradient compression algorithm that does not require materializing gi ,l (for MLP layer).5

Intuition
To compress gi ,l , just compress the components individually:

P(l)gi ,l := (P
(l)
in ⊗ P

(l)
out) ·

(
z in
i ,l ⊗

∂ℓi
∂zout

i ,l

)
= (P

(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

▶ Allocating k/L equally ⇒ target dimension for both is
√
k/L

5It is worth noting that from [Wan+25a], the calculation can even be batched.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 52 / 74

LoGra

As previously seen (LoGra)

g̃i ,l = P(l)gi ,l = (P
(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

Wl =

Forward Pass Backward Pass

g̃i ,l

P
(l)
in

P
(l)
out

√
p/L

√
k/L

√
k/L

LoGra

⊗

zout
i ,l

z in
i ,l

∂ℓi
∂zout

i,l

∂ℓi
∂z in

i,l

Wl √
p/L

=

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 53 / 74

LoGra

As previously seen (LoGra)

g̃i ,l = P(l)gi ,l = (P
(l)
in · z in

i ,l)⊗

(
P
(l)
out ·

∂ℓi
∂zout

i ,l

)

Wl =

Forward Pass Backward Pass

g̃i ,l

P
(l)
in

P
(l)
out

√
p/L

√
k/L

√
k/L

LoGra

⊗

zout
i ,l

z in
i ,l

∂ℓi
∂zout

i,l

∂ℓi
∂z in

i,l

Wl √
p/L

=

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 53 / 74

Computational Complexity of LoGra

We see that for a linear layer l :

▶ By assuming P(l) = P
(l)
in ⊗ P

(l)
out, we “decompose” the projection

▶ Let P(l)
in and P

(l)
out can be any compression algorithm

Say both P
(l)
in and P

(l)
out are the simple Random:

▶ P
(l)
in z in

i ,l and P
(l)
out∂ℓi/∂zout

i,l both takes O(
√
kp/L)

▶ Reconstructing g̃i ,l via ⊗ takes only O(k/L)

▶ Per gi ,l cost hence is O(
√
kp/L+ k/L) = O(

√
kp/L)

Overall, LoGra only takes O(n
√
kp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 54 / 74

Computational Complexity of LoGra

We see that for a linear layer l :

▶ By assuming P(l) = P
(l)
in ⊗ P

(l)
out, we “decompose” the projection

▶ Let P(l)
in and P

(l)
out can be any compression algorithm

Say both P
(l)
in and P

(l)
out are the simple Random:

▶ P
(l)
in z in

i ,l and P
(l)
out∂ℓi/∂zout

i,l both takes O(
√
kp/L)

▶ Reconstructing g̃i ,l via ⊗ takes only O(k/L)

▶ Per gi ,l cost hence is O(
√
kp/L+ k/L) = O(

√
kp/L)

Overall, LoGra only takes O(n
√
kp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 54 / 74

Computational Complexity of LoGra

We see that for a linear layer l :

▶ By assuming P(l) = P
(l)
in ⊗ P

(l)
out, we “decompose” the projection

▶ Let P(l)
in and P

(l)
out can be any compression algorithm

Say both P
(l)
in and P

(l)
out are the simple Random:

▶ P
(l)
in z in

i ,l and P
(l)
out∂ℓi/∂zout

i,l both takes O(
√
kp/L)

▶ Reconstructing g̃i ,l via ⊗ takes only O(k/L)

▶ Per gi ,l cost hence is O(
√
kp/L+ k/L) = O(

√
kp/L)

Overall, LoGra only takes O(n
√
kp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 54 / 74

Computational Complexity of LoGra

We see that for a linear layer l :

▶ By assuming P(l) = P
(l)
in ⊗ P

(l)
out, we “decompose” the projection

▶ Let P(l)
in and P

(l)
out can be any compression algorithm

Say both P
(l)
in and P

(l)
out are the simple Random:

▶ P
(l)
in z in

i ,l and P
(l)
out∂ℓi/∂zout

i,l both takes O(
√
kp/L)

▶ Reconstructing g̃i ,l via ⊗ takes only O(k/L)

▶ Per gi ,l cost hence is O(
√
kp/L+ k/L) = O(

√
kp/L)

Overall, LoGra only takes O(n
√
kp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 54 / 74

Computational Complexity of LoGra

We see that for a linear layer l :

▶ By assuming P(l) = P
(l)
in ⊗ P

(l)
out, we “decompose” the projection

▶ Let P(l)
in and P

(l)
out can be any compression algorithm

Say both P
(l)
in and P

(l)
out are the simple Random:

▶ P
(l)
in z in

i ,l and P
(l)
out∂ℓi/∂zout

i,l both takes O(
√
kp/L)

▶ Reconstructing g̃i ,l via ⊗ takes only O(k/L)

▶ Per gi ,l cost hence is O(
√
kp/L+ k/L) = O(

√
kp/L)

Overall, LoGra only takes O(n
√
kp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 54 / 74

Computational Complexity of LoGra

We see that for a linear layer l :

▶ By assuming P(l) = P
(l)
in ⊗ P

(l)
out, we “decompose” the projection

▶ Let P(l)
in and P

(l)
out can be any compression algorithm

Say both P
(l)
in and P

(l)
out are the simple Random:

▶ P
(l)
in z in

i ,l and P
(l)
out∂ℓi/∂zout

i,l both takes O(
√
kp/L)

▶ Reconstructing g̃i ,l via ⊗ takes only O(k/L)

▶ Per gi ,l cost hence is O(
√
kp/L+ k/L) = O(

√
kp/L)

Overall, LoGra only takes O(n
√
kp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 54 / 74

Putting Everything Together: LoGra

F̃θ̂

F̃θ̂,l

F̃−1
θ̂

F̃−1
θ̂,l

g̃i
g̃i

...

g̃i ,1

g̃i ,2

g̃i ,l

g̃i ,L

...

gi ,1

...

gi ,2

gi ,l

...

gi ,L

P(1)

P(2)

P(L)

P(l)

gi

Stage 0 Stage 1 Stage 2

g̃i

Forward

vectors Compressed vectors iFVP

FIM

Backward

O(np) O(np)

O(k3/L2)
O(nk

2

L)
Inverse

Product

Stage 0.9

Materialize
Gradient

Preparation

LoGra(1)

LoGra(2)

LoGra(L)

· · ·
LoGra(l)

· · ·

O(n
√
kp)

⊗

⊗

⊗

⊗

zi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 55 / 74

Table of Content
Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

GraSS

Linear Layers

LoGra

Factorized GraSS

Experiments

References
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 56 / 74

Now What?

Let’s summarize the situation a bit. For general layers:

▶ GraSS takes O(np) + O(nk ′) considering the cost of materializing gi

⇒ Fastest gradient compression algorithm so far

However, for linear layers:

▶ GraSS takes O(np) + O(nk ′), considering the cost of materializing gi
▶ LoGra takes O(n

√
kp), without materializing gi

⇒ LoGra beats GraSS by a lot

Problem
How to beat LoGra?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 57 / 74

Now What?

Let’s summarize the situation a bit. For general layers:

▶ GraSS takes O(np) + O(nk ′) considering the cost of materializing gi

⇒ Fastest gradient compression algorithm so far

However, for linear layers:

▶ GraSS takes O(np) + O(nk ′), considering the cost of materializing gi
▶ LoGra takes O(n

√
kp), without materializing gi

⇒ LoGra beats GraSS by a lot

Problem
How to beat LoGra?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 57 / 74

Now What?

Let’s summarize the situation a bit. For general layers:

▶ GraSS takes O(np) + O(nk ′) considering the cost of materializing gi

⇒ Fastest gradient compression algorithm so far

However, for linear layers:

▶ GraSS takes O(np) + O(nk ′), considering the cost of materializing gi
▶ LoGra takes O(n

√
kp), without materializing gi

⇒ LoGra beats GraSS by a lot

Problem
How to beat LoGra?

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 57 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)

Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:

▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...

▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

Naive Approach

A naive idea is to simply replace P
(l)
in and P

(l)
out with GraSS!

▶ Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (

√
p/L →

√
k/L, e.g., 4096 → 64):

▶ Random (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
Mask is still efficient, problem lies in SJLT’s practical implementation:
▶ Overhead: small problem size suffer...
▶ Hash Collision: even slower on small dimensions than on moderate dimensions

Intuition
Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 58 / 74

FactGraSS

Exploiting this intuition, we propose FactGraSS: Factorized version of GraSS:

Forward Pass Backward Pass

SJLT

g̃i ,l

Mask

Mask

⊗
Wl =

zout
i ,l

z in
i ,l

∂ℓi
∂zout

i,l

∂ℓi
∂z in

i,l

Wl

√
k ′/L

√
k ′/L

√
k/L×

√
k/L

=

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 59 / 74

FactGraSS

Exploiting this intuition, we propose FactGraSS: Factorized version of GraSS:

Forward Pass Backward Pass

SJLT

g̃i ,l

Mask

Mask

⊗
Wl =

zout
i ,l

z in
i ,l

∂ℓi
∂zout

i,l

∂ℓi
∂z in

i,l

Wl

√
k ′/L

√
k ′/L

√
k/L×

√
k/L

=

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 59 / 74

FactGraSS

We see that FactGraSS for one g̃i ,l involves:

1. Sparsification: Mask both factors of gi ,l to
√

k ′/L with k < k ′ ≪ p

2. Reconstruction: construct the “sparsified gradient” of dimension k ′/L

3. Sparse projection: SJLT the sparsified gradient of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

1. Two Mask from
√
p/L to

√
k ′/L: O(

√
k ′/L)

2. Tensor product between two vectors of size O(
√

k ′/L): O(k ′/L)

3. SJLT from O(k ′/L) to O(k/L): O(k ′/L)

Overall, FactGraSS takes O(nk ′), same as GraSS, but without materializing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 60 / 74

FactGraSS

We see that FactGraSS for one g̃i ,l involves:

1. Sparsification: Mask both factors of gi ,l to
√
k ′/L with k < k ′ ≪ p

2. Reconstruction: construct the “sparsified gradient” of dimension k ′/L

3. Sparse projection: SJLT the sparsified gradient of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

1. Two Mask from
√
p/L to

√
k ′/L: O(

√
k ′/L)

2. Tensor product between two vectors of size O(
√

k ′/L): O(k ′/L)

3. SJLT from O(k ′/L) to O(k/L): O(k ′/L)

Overall, FactGraSS takes O(nk ′), same as GraSS, but without materializing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 60 / 74

FactGraSS

We see that FactGraSS for one g̃i ,l involves:

1. Sparsification: Mask both factors of gi ,l to
√
k ′/L with k < k ′ ≪ p

2. Reconstruction: construct the “sparsified gradient” of dimension k ′/L

3. Sparse projection: SJLT the sparsified gradient of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

1. Two Mask from
√
p/L to

√
k ′/L: O(

√
k ′/L)

2. Tensor product between two vectors of size O(
√

k ′/L): O(k ′/L)

3. SJLT from O(k ′/L) to O(k/L): O(k ′/L)

Overall, FactGraSS takes O(nk ′), same as GraSS, but without materializing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 60 / 74

FactGraSS

We see that FactGraSS for one g̃i ,l involves:

1. Sparsification: Mask both factors of gi ,l to
√
k ′/L with k < k ′ ≪ p

2. Reconstruction: construct the “sparsified gradient” of dimension k ′/L

3. Sparse projection: SJLT the sparsified gradient of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

1. Two Mask from
√
p/L to

√
k ′/L: O(

√
k ′/L)

2. Tensor product between two vectors of size O(
√
k ′/L): O(k ′/L)

3. SJLT from O(k ′/L) to O(k/L): O(k ′/L)

Overall, FactGraSS takes O(nk ′), same as GraSS, but without materializing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 60 / 74

FactGraSS

We see that FactGraSS for one g̃i ,l involves:

1. Sparsification: Mask both factors of gi ,l to
√
k ′/L with k < k ′ ≪ p

2. Reconstruction: construct the “sparsified gradient” of dimension k ′/L

3. Sparse projection: SJLT the sparsified gradient of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

1. Two Mask from
√
p/L to

√
k ′/L: O(

√
k ′/L)

2. Tensor product between two vectors of size O(
√
k ′/L): O(k ′/L)

3. SJLT from O(k ′/L) to O(k/L): O(k ′/L)

Overall, FactGraSS takes O(nk ′), same as GraSS, but without materializing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 60 / 74

FactGraSS

We see that FactGraSS for one g̃i ,l involves:

1. Sparsification: Mask both factors of gi ,l to
√
k ′/L with k < k ′ ≪ p

2. Reconstruction: construct the “sparsified gradient” of dimension k ′/L

3. Sparse projection: SJLT the sparsified gradient of dimension k ′/L down to k/L

We see that the compression time per gi ,l consists of:

1. Two Mask from
√
p/L to

√
k ′/L: O(

√
k ′/L)

2. Tensor product between two vectors of size O(
√
k ′/L): O(k ′/L)

3. SJLT from O(k ′/L) to O(k/L): O(k ′/L)

Overall, FactGraSS takes O(nk ′), same as GraSS, but without materializing gi ,l !

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 60 / 74

Putting Everything Together: FactGraSS

F̃θ̂

F̃θ̂,l

F̃−1
θ̂

F̃−1
θ̂,l

g̃i
g̃i

...

g̃i ,1

g̃i ,2

g̃i ,l

g̃i ,L

...

gi ,1

...

gi ,2

gi ,l

...

gi ,L

P(1)

P(2)

P(L)

P(l)

gi

Stage 0 Stage 1 Stage 2

g̃i

Forward

vectors Compressed vectors iFVP

FIM

Backward

O(np) O(np)

O(k3/L2)
O(nk

2

L)
Inverse

Product

Stage 0.9

Materialize
Gradient

Preparation

FactGraSS(1)

FactGraSS(2)

FactGraSS(L)

· · ·
FactGraSS(l)

· · ·

O(nk ′)

⊗

⊗

⊗

⊗

zi

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 61 / 74

Summary

We summarize the results in the following:

Theorem (GraSS & FactGraSS [Hu+25])
There is a sublinear compression-based influence function algorithm with an overhead of

O(nk ′), where k < k ′ ≪ p.

Moreover, this extends to linear layers, where layer-wise gradients are never materialized.

Remark
Compared to LoGra which takes O(n

√
kp), FactGraSS is faster when

nk ′ < n
√

kp ⇔ k ′ <
√
kp.

Let k ′ = ck , then above is equivalent to ck ≤
√
kp ⇔ c ≤

√
p/k .

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 62 / 74

Summary

We summarize the results in the following:

Theorem (GraSS & FactGraSS [Hu+25])
There is a sublinear compression-based influence function algorithm with an overhead of

O(nk ′), where k < k ′ ≪ p.

Moreover, this extends to linear layers, where layer-wise gradients are never materialized.

Remark
Compared to LoGra which takes O(n

√
kp), FactGraSS is faster when

nk ′ < n
√

kp ⇔ k ′ <
√
kp.

Let k ′ = ck , then above is equivalent to ck ≤
√
kp ⇔ c ≤

√
p/k .

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 62 / 74

Summary

We summarize the results in the following:

Theorem (GraSS & FactGraSS [Hu+25])
There is a sublinear compression-based influence function algorithm with an overhead of

O(nk ′), where k < k ′ ≪ p.

Moreover, this extends to linear layers, where layer-wise gradients are never materialized.

Remark
Compared to LoGra which takes O(n

√
kp), FactGraSS is faster when

nk ′ < n
√

kp ⇔ k ′ <
√
kp.

Let k ′ = ck , then above is equivalent to ck ≤
√
kp ⇔ c ≤

√
p/k .

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 62 / 74

Summary

We summarize the results in the following:

Theorem (GraSS & FactGraSS [Hu+25])
There is a sublinear compression-based influence function algorithm with an overhead of

O(nk ′), where k < k ′ ≪ p.

Moreover, this extends to linear layers, where layer-wise gradients are never materialized.

Remark
Compared to LoGra which takes O(n

√
kp), FactGraSS is faster when

nk ′ < n
√
kp ⇔ k ′ <

√
kp.

Let k ′ = ck , then above is equivalent to ck ≤
√
kp ⇔ c ≤

√
p/k .

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 62 / 74

Table of Content

Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

Experimental Setup

Quantitative Study

Qualitative Study

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 63 / 74

Experimental Setup

We consider the following setups:

▶ experiment on TRAK and influence function
▶ focus on speed and accuracy of our method

Quantitative Study: Small model and datasets

▶ Accuracy: Able to measure LDS scores
▶ Efficiency: Compare wall-time difference for projection

Qualitative Study: Large model and datasets

▶ Accuracy: Case study on the most influential data points
▶ Efficiency: Focus on throughput

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 64 / 74

Table of Content

Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

Experimental Setup

Quantitative Study

Qualitative Study

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 65 / 74

Quantitative Study

Sparsification Sparse Projection Baselines

Maskk SJLTk FJLTk Randomk

k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.3803 0.4054 0.4318 0.4171 0.4280 0.4357 0.4146 0.4359 0.4347 0.4101 0.4253 0.4346
Time (s) 0.1517 0.1458 0.1501 0.4919 0.5172 0.4754 0.8997 1.4341 2.4387 3.0806 5.5421 10.8355

Table: MLP with MNIST on TRAK.

Sparsification Sparse Projection GraSS Baseline

Maskk SJLTk SJLTk ◦ Mask4kmax FJLTk

k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.3690 0.4116 0.4236 0.4131 0.4499 0.4747 0.4123 0.4357 0.4545 0.4157 0.4497 0.4753
Time (s) 0.1026 0.1074 0.1296 12.3590 12.2393 17.4836 0.3652 0.3648 0.3993 31.5491 48.1669 81.9322

Table: ResNet9 with CIFAR2 on TRAK.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 66 / 74

Quantitative Study

Sparsification Sparse Projection GraSS Baseline

Maskk SJLTk SJLTk ◦ Mask64kmax FJLTk

k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.1281 0.1456 0.1469 0.3062 0.3533 0.3861 0.2840 0.3242 0.3413 0.2907 0.3585 0.4011
Time (s) 0.5341 0.5067 0.5179 21.6460 21.1881 21.3192 2.6934 2.6071 2.7202 100.8136 156.0613 269.9093

Table: MusicTransformer with MAESTRO on TRAK.

Sparsification Sparse Projection FactGraSS Baseline (LoGra)

Mask√
k̂⊗

√
k̂

SJLT√
k̂⊗

√
k̂

SJLT√
k̂

2 ◦ Mask
2
√

k̂⊗2
√

k̂
Random√

k̂⊗
√

k̂

k̂ (= k/L) 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096

LDS 0.1034 0.1479 0.2391 0.1240 0.1897 0.2389 0.1126 0.1784 0.2360 0.1188 0.1818 0.2338
Time (s) 5.4933 5.3643 5.6385 132.5404 133.4029 136.5163 6.5790 7.4161 6.3075 20.4839 20.9835 22.2157

Table: GPT2-small with WikiText on (block-diagonal FIM) influence function.
PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 67 / 74

Table of Content

Introduction

Accelerating iHVP

State-of-the-Art Gradient Compression

Experiments

Experimental Setup

Quantitative Study

Qualitative Study

References

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 68 / 74

Qualitative Study

Next, we compare FactGraSS and LoGra on billion-scale model and dataset

Compress iHVP
k̂ (= k/L) 256 1024 4096 256 1024 4096

LoGra 27,292 27,255 26,863 7,307 7,478 7,367
FactGraSS 72,218 72,684 73,811 8,584 8,594 8,681

Table: Throughput (tokens/s) for Llama-3.1-8B-Instruct on (block-diagonal FIM) influence function.

Remark
In terms of gradient compression, FactGraSS outperforms LoGra by 160%.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 69 / 74

Qualitative Study

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 70 / 74

Q&A Time!

Thanks! Ask anything you want!

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 71 / 74

References I

[ABH17] Naman Agarwal, Brian Bullins, and Elad Hazan. “Second-order stochastic optimization for machine learning
in linear time”. In: Journal of Machine Learning Research 18.116 (2017), pp. 1–40.

[Cho+24] Sang Keun Choe et al. What Is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence
Functions. May 22, 2024. doi: 10.48550/arXiv.2405.13954. arXiv: 2405.13954 [cs]. url:
http://arxiv.org/abs/2405.13954 (visited on 09/14/2024).

[DKS10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. “A sparse johnson: Lindenstrauss transform”. In:
Proceedings of the forty-second ACM symposium on Theory of computing. 2010, pp. 341–350.

[Gro+23] Roger Grosse et al. “Studying large language model generalization with influence functions”. In: arXiv
preprint arXiv:2308.03296 (2023).

[He+25] Yifei He et al. “Localize-and-Stitch: Efficient Model Merging via Sparse Task Arithmetic”. In: Transactions
on Machine Learning Research (2025). issn: 2835-8856. url:
https://openreview.net/forum?id=9CWU8Oi86d.

[HNM19] Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. “Data cleansing for models trained with SGD”. In:
Advances in Neural Information Processing Systems 32 (2019).

[Hu+25] Pingbang Hu et al. “GraSS: Scalable Influence Function with Sparse Gradient Compression”. In: Advances
in Neural Information Processing Systems. 2025.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 72 / 74

https://doi.org/10.48550/arXiv.2405.13954
https://arxiv.org/abs/2405.13954
http://arxiv.org/abs/2405.13954
https://openreview.net/forum?id=9CWU8Oi86d

References II
[KL17] Pang Wei Koh and Percy Liang. “Understanding black-box predictions via influence functions”. In:

International conference on machine learning. PMLR. 2017, pp. 1885–1894.

[KN14] Daniel M Kane and Jelani Nelson. “Sparser johnson-lindenstrauss transforms”. In: Journal of the ACM
(JACM) 61.1 (2014), pp. 1–23.

[Kwo+24] Yongchan Kwon et al. “DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion
Models”. In: The Twelfth International Conference on Learning Representations. 2024. url:
https://openreview.net/forum?id=9m02ib92Wz.

[MG15] James Martens and Roger Grosse. “Optimizing Neural Networks with Kronecker-factored Approximate
Curvature”. In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by
Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR,
July 2015, pp. 2408–2417. url: https://proceedings.mlr.press/v37/martens15.html.

[Par+23] Sung Min Park et al. “TRAK: Attributing Model Behavior at Scale”. In: International Conference on
Machine Learning. PMLR. 2023, pp. 27074–27113.

[Sch+22] Andrea Schioppa et al. “Scaling Up Influence Functions”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 36.8 (June 2022), pp. 8179–8186. doi: 10.1609/aaai.v36i8.20791. url:
https://ojs.aaai.org/index.php/AAAI/article/view/20791.

[Wan+24] Ke Wang et al. “Localizing task information for improved model merging and compression”. In: arXiv
preprint arXiv:2405.07813 (2024).

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 73 / 74

https://openreview.net/forum?id=9m02ib92Wz
https://proceedings.mlr.press/v37/martens15.html
https://doi.org/10.1609/aaai.v36i8.20791
https://ojs.aaai.org/index.php/AAAI/article/view/20791

References III

[Wan+25a] Jiachen T Wang et al. “GREATS: Online Selection of High-Quality Data for LLM Training in Every
Iteration”. In: Advances in Neural Information Processing Systems 37 (2025), pp. 131197–131223.

[Wan+25b] Jiachen T. Wang et al. “Capturing the Temporal Dependence of Training Data Influence”. In: The
Thirteenth International Conference on Learning Representations. 2025. url:
https://openreview.net/forum?id=uHLgDEgiS5.

[Woj+16] Mike Wojnowicz et al. ““Influence Sketching”: Finding Influential Samples in Large-Scale Regressions”. In:
2016 IEEE International Conference on Big Data (Big Data). 2016 IEEE International Conference on Big
Data (Big Data). Washington DC,USA: IEEE, Dec. 2016, pp. 3601–3612. isbn: 978-1-4673-9005-7. doi:
10.1109/BigData.2016.7841024. url: http://ieeexplore.ieee.org/document/7841024/ (visited on
12/06/2023).

[Yad+23] Prateek Yadav et al. “Ties-merging: Resolving interference when merging models”. In: Advances in Neural
Information Processing Systems 36 (2023), pp. 7093–7115.

PH, JM, WT, HZ, JM Speeding up TDA with GraSS [Hu+25] September 23, 2025 74 / 74

https://openreview.net/forum?id=uHLgDEgiS5
https://doi.org/10.1109/BigData.2016.7841024
http://ieeexplore.ieee.org/document/7841024/

	Introduction
	Overview
	Recap on Influence Function
	Computing Influence Function

	Accelerating iHVP
	Small Detour
	Hessian Approximation
	Gradient Compression

	State-of-the-Art Gradient Compression
	GraSS
	Linear Layers
	LoGra
	Factorized GraSS

	Experiments
	Experimental Setup
	Quantitative Study
	Qualitative Study

	References
	References

