GRASS : Scalable Influence Function with Sparse Gradient

Compression
A Foray to Efficient Data Attribution and Influence Function

2

Pingbang Hu! Joseph Melkonian?> Weijing Tang® Han Zhao! Jiagi W. Ma?

LUniversity of lllinois Urbana-Champaign 2Womp Labs 3Carnegie Mellon University

September 23, 2025

I iLLINOIS

URBANA-CHAMPAIGN

PH, JM, WT, HZ, JM Spee up TDA with GRASS [Hu+-25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Most of the popular data attribution methods are gradient-based-

PH, JM, WT, HZ, JM Speedi up TDA with GRASS [Hu+-25] September 23, 2025

Most of the popular data attribution methods are gradient-based-

» Influence Function: Influence Function [], TRAK [|, etc.
» Training Dynamic: SGD-influence |], Data-Value Embedding |], etc.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+25] September 23, 2025

Most of the popular data attribution methods are gradient-based-

» Influence Function: Influence Function [], TRAK [|, etc.
» Training Dynamic: SGD-influence |], Data-Value Embedding |], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+25] September 23, 2025

Most of the popular data attribution methods are gradient-based-

» Influence Function: Influence Function | |, TRAK [|, etc.
» Training Dynamic: SGD-influence | |, Data-Value Embedding |], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Introduce all common tricks for speeding up gradient-based data attribution methods.

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Most of the popular data attribution methods are gradient-based-

» Influence Function: Influence Function [], TRAK [|, etc.
» Training Dynamic: SGD-influence |], Data-Value Embedding |], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Introduce all common tricks for speeding up gradient-based data attribution methods.

» FIM block-diagonal approximation of Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Most of the popular data attribution methods are gradient-based-

» Influence Function: Influence Function [], TRAK [|, etc.
» Training Dynamic: SGD-influence |], Data-Value Embedding |], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Introduce all common tricks for speeding up gradient-based data attribution methods.

» FIM block-diagonal approximation of Hessian
» Gradient compression: RANDOM [|, LOGRA [|, and GRASS []

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Most of the popular data attribution methods are gradient-based-

» Influence Function: Influence Function [], TRAK [|, etc.
» Training Dynamic: SGD-influence |], Data-Value Embedding |], etc.

Most of the methods are expensive, both computation-wise and memory-wise...

Introduce all common tricks for speeding up gradient-based data attribution methods.

» FIM block-diagonal approximation of Hessian
» Gradient compression: RANDOM [], LOGRA [|, and GRASS []

Example (Running example)

We will consider the classical Influence Function [] throughout the talk.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|
> Given a quantity of interest—a target function (D) of 0p, e.g., validation loss

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|
» Given a quantity of interest—a target function f(D) of fp, e.g., validation loss
> Predict how f will change, if the dataset D is counterfactually perturbed to D’:

Af = f(D') - £(D).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|
» Given a quantity of interest—a target function f(D) of fp, e.g., validation loss
> Predict how f will change, if the dataset D is counterfactually perturbed to D’:

Af = f(D') - £(D).

Popular methods study this from a fine-grained, localized viewpoint:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|
» Given a quantity of interest—a target function f(D) of fp, e.g., validation loss
> Predict how f will change, if the dataset D is counterfactually perturbed to D’:

Af = f(D') — f(D).
Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D’ of the form D’ = D\ B for a small batch of samples B (or D’ = DU B)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|
» Given a quantity of interest—a target function f(D) of fp, e.g., validation loss
> Predict how f will change, if the dataset D is counterfactually perturbed to D’:

Af = f(D') — f(D).
Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D’ of the form D’ = D\ B for a small batch of samples B (or D’ = DU B)
2. For each possible B, we predict 7¢(B) := f(D \ B) — f(D) (or f(DU B) — f(D))

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Data Attribution

Data attribution algorithms quantify counterfactual effect for dataset perturbation:

» Say we have a model Ap trained on D, with p = |Ap| and n = |D|
» Given a quantity of interest—a target function f(D) of fp, e.g., validation loss
> Predict how f will change, if the dataset D is counterfactually perturbed to D’:

Af = f(D') — f(D).
Popular methods study this from a fine-grained, localized viewpoint:

1. Consider D’ of the form D’ = D\ B for a small batch of samples B (or D’ = DU B)
2. For each possible B, we predict 7¢(B) := f(D \ B) — f(D) (or f(DU B) — f(D))

Popular choice of B: B; = {z;} for z; € D, i.e., 7¢(B;) provides the point-wise effect.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Introduction to Influence Function

Intuition (Estimating 7¢)

Parametrize D by a default weight vector w = 1/n € R" for the data points z;'s.

'For notational simplicity, we write £; := £(z;;) hereafter.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Introduction to Influence Function

Intuition (Estimating 7¢)

Parametrize D by a default weight vector w = 1/n € R" for the data points z;'s.
— Model trained on (weighted) D is a function of w: f,, = arg min, > zeD wil;t

'For notational simplicity, we write £; := £(z;;) hereafter.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Introduction to Influence Function

Intuition (Estimating 7¢)

Parametrize D by a default weight vector w = 1/n € R" for the data points z;'s.
— Model trained on (weighted) D is a function of w: f,, = arg min, > zeD wil;t

— Taylor-expand 0,, around w = 1/n < estimating perturbation effects (D — D')

'For notational simplicity, we write £; := £(z;;) hereafter.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Introduction to Influence Function

Intuition (Estimating 7¢)
Parametrize D by a default weight vector w = 1/n € R" for the data points z;'s.
— Model trained on (weighted) D is a function of w: f,, = arg min, > zeD wil;t

— Taylor-expand 0,, around w = 1/n < estimating perturbation effects (D — D')

D D’

WN—

'For notational simplicity, we write £; := £(z;;) hereafter.
September 23, 2025

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z}) = f(D \ {z}) — f(D):

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z}) = f(D \ {z}) — f(D):

> Write D\ {z} as D — 1z

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):

> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!

Since 6, is a function of w, so is f(w):

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

Af

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

Af =1¢({z})

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

Af =7e({zi}) = [f(D +ez) = F(D)]|—_1

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

df(é-l-ezi)

Af = 7e({z}) = [F(D+ez) — F(D)]|__s ~ el s+

e=0

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

df(é-l-ezi)

Af = 7e({z}) = [F(D+ez) — F(D)]|__s ~ el s+

e=0

2. From chain rule:

df(é-i-ez,-)

de
e=0

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

df(é-l-ezi)

Af =r¢({z}) = [F(D+ez) = F(D)| oy = el 1 — 1

e=0

2. From chain rule:

df (é-l-ez,')
de

dé—i—ez,-

= Vo f(é+ezi)T L:O de

e=0

e=0

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Counterfactual Prediction from Freshman Calculus

To estimate 7¢({z;}) = f(D \ {z}) — f(D):
> Write D\ {z} as D — 1z = 7¢({z}) = f(D + ez;) — f(D) with e = —1/n!
Since 6, is a function of w, so is f(w):

1. From first-order approximation (i.e., Taylor expansion):

df (01ez,
AF = () = [FD+e2) — F(O)|__y ~],y - =)
e=0
2. From chain rule:
df(é+€zi) _ ~ T’ dé—i—ez,- _ N T dé+€zi
41(0:s)) = Vof(Drer) o ~ = Vof(01/) - Cde o

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let§ = HAH/H be the ERM trained on D and Hy; = % > 2D V3(; be the empirical Hessian.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let § = HAﬂ/n be the ERM trained on D and Hy; = % Zz;eD V%K,- be the empirical Hessian. The
influence function of upweighting z; € D on the target function f is:

— df(é—HZ,-) _ 0\ T dé+62i
I(Z,, f) = d—€ = ng(@) de

e=0

= —Vof(8)TH; ' Vot;.

e=0

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Influence Function

Theorem (Influence function [KL17; Gro+23])

Let § = HAﬂ/n be the ERM trained on D and Hy; = % Zz;eD V%K,- be the empirical Hessian. The
influence function of upweighting z; € D on the target function f is:

T(z;, £) = Fen)

At dOi s
= T “V+tez
de = Vof(?) de

e=0

= —Vof(8)TH; ' Vot;.

e=0

1

2

e A(w', 0(0))

! w & D+ ez
n

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Computing Influence Function

As previously seen (Influence function)

Counterfactual prediction of removing z; is Af = 1¢({z;}) = € -Z(z;, f) with e = —1/n, where

a 1
I(zi,f) = ~Vof(9) "Hy 'Voli, Hy=—% Vi
zieD

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computing Influence Function

As previously seen (Influence function)

Counterfactual prediction of removing z; is Af = 1¢({z;}) = € -Z(z;, f) with e = —1/n, where

a 1
I(zi,f) = ~Vof(9) "Hy 'Voli, Hy=—% Vi
zieD

The main computation is the inverse-Hessian-vector-product H(;leQE,-, or iHVP:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computing Influence Function

As previously seen (Influence function)

Counterfactual prediction of removing z; is Af = 1¢({z;}) = € - Z(z;, f) with e = —1/n, where

a 1
I(zi,f) = ~Vof(9) "Hy 'Voli, Hy=—% Vi
zieD

The main computation is the inverse-Hessian-vector-product H(;leQK,-, or iHVP:

Once iHVP is solved, T¢({z;}) can be computed by efficient inner-product with Vyf.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computing Influence Function

As previously seen (Influence function)

Counterfactual prediction of removing z; is Af = 1¢({z;}) = € - Z(z;, f) with e = —1/n, where

a 1
I(zi,f) = ~Vof(9) "Hy 'Voli, Hy=—% Vi
zieD

The main computation is the inverse-Hessian-vector-product H(;leQK,-, or iHVP:

Once iHVP is solved, T¢({z;}) can be computed by efficient inner-product with Vyf.

» Vector Vyl; € RP: first-order gradient for all z; € D

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computing Influence Function

As previously seen (Influence function)

Counterfactual prediction of removing z; is Af = 1¢({z;}) = € - Z(z;, f) with e = —1/n, where

a 1
I(zi,f) = ~Vof(9) "Hy 'Voli, Hy=—% Vi
zieD

The main computation is the inverse-Hessian-vector-product H(;leQK,-, or iHVP:

Once iHVP is solved, T¢({z;}) can be computed by efficient inner-product with Vyf.

» Vector Vyl; € RP: first-order gradient for all z; € D

> Inverse-Hessian H(;_l € RP*P: inverting a p X p second-order Hessian

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

Next, the issue of storage:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

Next, the issue of storage:

» Storing all vectors {Vyl; € RP}!_; requires O(np).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

Next, the issue of storage:

» Storing all vectors {Vyl; € RP}!_; requires O(np).
» Storing inverse-Hessian Hg_l requires O(p?)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

Next, the issue of storage:

» Storing all vectors {Vyl; € RP}!_; requires O(np).
» Storing inverse-Hessian Hg_l requires O(p?)

Remark (Main bottleneck)

Respectively, the main bottlenecks are:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

Next, the issue of storage:

» Storing all vectors {Vyl; € RP}!_; requires O(np).
» Storing inverse-Hessian Hg_l requires O(p?)

Remark (Main bottleneck)

Respectively, the main bottlenecks are:

» Computation: inverse-Hessian O(p?)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Bottleneck of Naive iHVP

There are several bottlenecks for iHVP. First, the computation:

» Computing all vectors {Vg/;}?_; requires O(np)
» Computing inverse-Hessian H@_1 requires O(p? + p3) = O(p%)
» Computing product requires O(np?)

Next, the issue of storage:

» Storing all vectors {Vyl; € RP}!_; requires O(np).
» Storing inverse-Hessian Hg_l requires O(p?)

Remark (Main bottleneck)

Respectively, the main bottlenecks are:
» Computation: inverse-Hessian O(p?)

» Storage: vectors + inverse-Hessian O(np + p?)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Classical iHVP

iHVP is actually a general problem:

PH, JM, WT, HZ, JM eedi up TDA with GRASS [Hu+-25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

PH, JM, WT, HZ, JM eeding up TDA with GRASS [Hu+25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

> Techniques to accelerate iHVP computation has been developed

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

> Techniques to accelerate iHVP computation has been developed

Notably, these techniques aims to directly compute iHVP:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

> Techniques to accelerate iHVP computation has been developed
Notably, these techniques aims to directly compute iHVP:

> They require using the result of iHVP literally

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

> Techniques to accelerate iHVP computation has been developed
Notably, these techniques aims to directly compute iHVP:

> They require using the result of iHVP literally
> LiSSA | |, Datalnf [|: avoiding performing large matrix inverse

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

> Techniques to accelerate iHVP computation has been developed
Notably, these techniques aims to directly compute iHVP:

> They require using the result of iHVP literally
> LiSSA | |, Datalnf [|: avoiding performing large matrix inverse

However, they tend to be slow and can't be scaled up.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Classical iHVP

iHVP is actually a general problem:

> E.g., it appears in stochastic optimization (read: conditioned gradient)

> Techniques to accelerate iHVP computation has been developed
Notably, these techniques aims to directly compute iHVP:

> They require using the result of iHVP literally
> LiSSA | |, Datalnf [|: avoiding performing large matrix inverse

However, they tend to be slow and can't be scaled up.

iHVP in influence function specifically is different and orthogonal to above.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fz equals Hy:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fz equals Hy:

1
Fé = . E V@K,'Vef,—-r.
z;eD

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fz equals Hy:

1
Fé = . E V@K,'Vef,—-r.
z;eD

We see that using FIM approximation:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fz equals Hy:

1
Fé = . E V@K,'Vgﬁ,—-r.
z;eD

We see that using FIM approximation:

» Although no higher-order differentiation, computation changes from O(p?) to O(np?)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fz equals Hy:

1
Fé = . E V@ﬁ,’Vf)ﬁ,—-r.
z;eD

We see that using FIM approximation:

» Although no higher-order differentiation, computation changes from O(p?) to O(np?)
> Inverting still requires O(p?), as well as storage O(p?)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: FIM

To mitigate the bottleneck of inverse-Hessian:

Theorem (Fisher information matrix)

For cross-entropy loss, in expectation, empirical fisher information matrix (FIM) Fz equals Hy:

1
Fé = . E Vgé,-VgK,T.
z;eD

We see that using FIM approximation:

» Although no higher-order differentiation, computation changes from O(p?) to O(np?)
> Inverting still requires O(p?), as well as storage O(p?)

Problem
Why is this helpful?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fy:

PH, JM, WT, HZ, JM = up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fy:

» Structural assumption: layers are independent = F; is block-diagonal (and hence F;%)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fy:

» Structural assumption: layers are independent = F; is block-diagonal (and hence F;%)

> Inverse and product can now be done /ayer-wisel

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fy:

» Structural assumption: layers are independent = F; is block-diagonal (and hence F;%)

> Inverse and product can now be done /ayer-wisel

If you enjoy figures...

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Scalable Approximation: Block-Diagonal FIM

To actually speed up inverse-Hessian, we break Fy:

» Structural assumption: layers are independent = Fj is block-diagonal (and hence ;%)

> Inverse and product can now be done /ayer-wisel

If you enjoy figures...

Vol Vol
—— Vl; [— Vl;
Inverse Product Inverse Product
s —_— = s 1 |—
_1 0, _1| 6,
Fy Fo Fy Fa

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)
Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

Is this enough? Probably not since p is typically large:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

Is this enough? Probably not since p is typically large:

» Computation-wise, inverse-FIM takes O(p3/L?).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

Is this enough? Probably not since p is typically large:

» Computation-wise, inverse-FIM takes O(p3/L?).
> Storing vectors is challenging: O(np) for 1B model with 1B dataset ~ 4EB

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

Is this enough? Probably not since p is typically large:

» Computation-wise, inverse-FIM takes O(p3/L?).
> Storing vectors is challenging: O(np) for 1B model with 1B dataset ~ 4EB

The main bottleneck now becomes the large p for Vy/;:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

Is this enough? Probably not since p is typically large:

» Computation-wise, inverse-FIM takes O(p3/L?).
> Storing vectors is challenging: O(np) for 1B model with 1B dataset ~ 4EB

The main bottleneck now becomes the large p for Vy/;:

> If we can operate with vectors of dimension k < p

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Remaining Bottlenecks

Remark (Main bottleneck for block-diagonal FIM)

Say we have L layers. Respectively, the main bottlenecks are:
» Computation: vectors + inverse-FIM + product O(np + p3/L? + np?/L + np?/L)
» Storage: vectors + inverse-FIM O(np + p?/L)

Is this enough? Probably not since p is typically large:

» Computation-wise, inverse-FIM takes O(p3/L?).
> Storing vectors is challenging: O(np) for 1B model with 1B dataset ~ 4EB

The main bottleneck now becomes the large p for Vy/;:
> If we can operate with vectors of dimension k < p

= Replacing p with k everywhere (with some computation overhead...)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Gradient Compression

Intuition (Gradient Compression)

We can compress gj == Vl; € RP down to g; € R¥ for some k < p.

2In our case, we're considering more complicated operations. See discussion in [I

PH, JM, WT, HZ, JM = p TDA with GrRASS [Hu+25] September 23, 2025

Gradient Compression

Intuition (Gradient Compression)

We can compress gj == Vl; € RP down to g; € R¥ for some k < p.

The possibility of compression is motivated by the following:

2In our case, we're considering more complicated operations. See discussion in [I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient Compression

Intuition (Gradient Compression)

We can compress gi = Vgl; € RP down to g; € R¥ for some k < p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in RY, they can be projected to R¥ with k = O("’e# while approximately

preserving pairwise distances and geometric structure.

2In our case, we're considering more complicated operations. See discussion in [I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient Compression

Intuition (Gradient Compression)

We can compress gi = Vgl; € RP down to g; € R¥ for some k < p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in RY, they can be projected to R¥ with k = O("’e# while approximately

preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):?

2In our case, we're considering more complicated operations. See discussion in [I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient Compression

Intuition (Gradient Compression)

We can compress gi = Vgl; € RP down to g; € R¥ for some k < p.

The possibility of compression is motivated by the following:

Theorem ((Informal) Johnson-Lindenstrauss Lemma)

Given n vectors in RY, they can be projected to R¥ with k = O("’e# while approximately

preserving pairwise distances and geometric structure.

This tells us that for simple operations (e.g., inner products):?

> Compression algorithms that admit JL guarantee can be integrated.

2In our case, we're considering more complicated operations. See discussion in [I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?

The reason is the following:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?

The reason is the following:

> PreViOUst, the app“cation they Consider requires iHVP (read: update parameters with conditioned gradient)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?

The reason is the following:

> PreViOUst, the app“cation they Consider requires iHVP (read: update parameters with conditioned gradient)

» Now, in influence function computation, we take inner product between iHVP and V£

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?
The reason is the following:

> PreViOUst, the app“cation they Consider requires iHVP (read: update parameters with conditioned gradient)

» Now, in influence function computation, we take inner product between iHVP and V£

Overall,

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?
The reason is the following:

> PreViOUst, the app“cation they Consider requires iHVP (read: update parameters with conditioned gradient)

» Now, in influence function computation, we take inner product between iHVP and V£

Overall,

> operating on smaller vectors makes no sense to optimization-related application;

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Small Detour: Why Compression is New?

A natural question you now should have is:

Why can't we also apply gradient compression in, say, LiSSA?
The reason is the following:

> PreViOUst, the app“cation they Consider requires iHVP (read: update parameters with conditioned gradient)

» Now, in influence function computation, we take inner product between iHVP and V£

Overall,

> operating on smaller vectors makes no sense to optimization-related application;

> but for us, we can also compress Vf and take inner product without problems!

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

RANDOM and its Computational Complexity

Example (Gaussian/Rademacher Projection (RANDOM [Woj+16]))

Linear map induced by P € R¥*P with P; bR (0,1) or U({=£1}) satisfies the JL lemma.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

RANDOM and its Computational Complexity

Example (Gaussian/Rademacher Projection (RANDOM [Woj+16]))

Linear map induced by P € R¥*P with P; bR N(0,1) or U({£1}) satisfies the JL lemma.

RANDOM states that to compress g; ;, consider
~ /
g = PO x g

for some projection matrix P(!) ¢ RK/LxP/L that satisfies JL guarantee.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+25] September 23, 2025

RANDOM and its Computational Complexity

Example (Gaussian/Rademacher Projection (RANDOM [Woj+16]))

Linear map induced by P € R¥*P with P; bR N(0,1) or U({£1}) satisfies the JL lemma.

RANDOM states that to compress g; ;, consider
~ /
g = PO x g
for some projection matrix P(!) ¢ RK/LxP/L that satisfies JL guarantee.

> Projection time per g; is O(kp/L?).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+25] September 23, 2025

RANDOM and its Computational Complexity

Example (Gaussian/Rademacher Projection (RANDOM [Woj+16]))

Linear map induced by P € R¥*P with P; bR N(0,1) or U({£1}) satisfies the JL lemma.

RANDOM states that to compress g; ;, consider
gy =P x g,
for some projection matrix P() € R¥/LXP/L that satisfies JL guarantee.
> Projection time per g; is O(kp/L?).

In total, for all data points and all layers, RANDOM takes O(npk/L).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+25] September 23, 2025

Putting Everything Together: RANDOM

To put everything together:

Stage 0: Compute all per-sample gradients g; € R”

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: RANDOM

To put everything together:

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: RANDOM

To put everything together:
Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to 8l € R¥/L, giving & € R.

PH, JM, WT, HZ, JM

Speeding up TDA with GrRASS [Hu+25]

September 23, 2025

Putting Everything Together: RANDOM

To put everything together:
Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: RANDOM with matrix multiplication implementation O(npk/L)
> Storage: compressed vectors O(nk)

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Putting Everything Together: RANDOM

To put everything together:
Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: RANDOM with matrix multiplication implementation O(npk/L)
> Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g;:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: RANDOM

To put everything together:
Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: RANDOM with matrix multiplication implementation O(npk/L)
> Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g;:

» Computation: inverse-FIM + product O(k®/L? + nk?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: RANDOM

To put everything together:
Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: RANDOM with matrix multiplication implementation O(npk/L)
> Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g;:

» Computation: inverse-FIM + product O(k®/L? + nk?/L)
> Storage: inverse-FIM O(k?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: RANDOM

Stage 0 Stage 1 Stage 2
vectors Compressed vectors iFVP

Ranpom® _ —
8i1 8i1
—= Ranpom® _ =
8i2 8i2

Ranpom(®) _]
8i,l 8i,l
e e L)o@k g
O O - (L) - -
Backward gL RANDOM gL q:
O(np) O(npk/L) o Eg_,,l
o

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

To provide some context:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

To provide some context:

» O(np) for vectors is roughly one training epoch

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

To provide some context:

» O(np) for vectors is roughly one training epoch
> Per-layer projection dimension is typically k/L =~ 4096.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

To provide some context:

» O(np) for vectors is roughly one training epoch
> Per-layer projection dimension is typically k/L =~ 4096.
» Overhead of RANDOM is 4096 more epochs of training

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

To provide some context:

» O(np) for vectors is roughly one training epoch
> Per-layer projection dimension is typically k/L =~ 4096.
» Overhead of RANDOM is 4096 more epochs of training

This is clearly infeasible.

September 23, 2025

Speeding up TDA with GrRASS [Hu+25]

PH, JM, WT, HZ, JM

Overhead of Gradient Compression

As previously seen (Computation Cost)

1. RANDOM with matrix multiplication implementation O(npk/L)
2. vectors + inverse-FIM + product O(np + k3/L% + nk?/L)

To provide some context:

» O(np) for vectors is roughly one training epoch
> Per-layer projection dimension is typically k/L =~ 4096.
» Overhead of RANDOM is 4096 more epochs of training

This is clearly infeasible.

Problem
How to speed up the overhead of compression?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

3This is also used in TRAK's implementation (https://github.com/MadryLab/trak).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

» Compress vectors faster than matrix multiplication (i.e., RANDOM)

3This is also used in TRAK's implementation (https://github.com/MadryLab/trak).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

» Compress vectors faster than matrix multiplication (i.e., RANDOM)

» One alternative: fast Johnson-Lindenstrauss transform!3

3This is also used in TRAK's implementation (https://github.com/MadryLab/trak).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

» Compress vectors faster than matrix multiplication (i.e., RANDOM)

» One alternative: fast Johnson-Lindenstrauss transform!3
FJLT leverages discrete Fast Fourier Transform (FFT):

> Projection time per g;; can be reduced from O(kp/L?) to O(&Lk log p).

3This is also used in TRAK's implementation (https://github.com/MadryLab/trak).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/MadryLab/trak

Fast Johnson-Lindenstrauss Transform

A natural idea is to search for faster compression algorithm:

» Compress vectors faster than matrix multiplication (i.e., RANDOM)

» One alternative: fast Johnson-Lindenstrauss transform!3
FJLT leverages discrete Fast Fourier Transform (FFT):
> Projection time per g;; can be reduced from O(kp/L?) to O(&Lk log p).

In total, for all data points and all layers, FJLT takes O(n(p + k) log p)

It's roughly the same for one training epoch!

3This is also used in TRAK's implementation (https://github.com/MadryLab/trak).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/MadryLab/trak

Putting Everything Together: FJLT

Stage 0 Stage 1 Stage 2
vectors Compressed vectors iFVP
FILT® _ 4
Forward , gil 81l
4 o & FILT® _ 5
&i2 8i2
N FILTO _
H 8i,l 8i,l
Seste | : O(k3/1?)
. : FJLT(L) _ - —_—
Backward gL gL q:
O(np) O(n(p + k)logp) N
FA—].)
)

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Investigating RANDOM

In RANDOM, with a Rademacher projection matrix P():

» Dense Matrix: Each entry of P() is sampled i.i.d. from U{£1}).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Investigating RANDOM

In RANDOM, with a Rademacher projection matrix P():

» Dense Matrix: Each entry of P() is sampled i.i.d. from U{£1}).
> Matrix multiplication takes O(kp/L?) per g; :

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Investigating RANDOM

In RANDOM, with a Rademacher projection matrix P():

» Dense Matrix: Each entry of P() is sampled i.i.d. from U{£1}).
> Matrix multiplication takes O(kp/L?) per g; :

p) X g = P:(q x (g1 +-+ P:(/,),/L X (giNp/L = &l
oD o
' O X = X + -4 X =
OO
k/Lx p/L k/L

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sparser Johnson-Lindenstrauss Transform

Sparse Johnson-Lindenstrauss transform | ;] considers a sparser P() instead:

» Sparse Matrix: For every column of P(), only choose s < k/L elements to be non-zero.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sparser Johnson-Lindenstrauss Transform

Sparse Johnson-Lindenstrauss transform | ;] considers a sparser P() instead:

» Sparse Matrix: For every column of P(), only choose s < k/L elements to be non-zero.
» SJLT takes only O(s- p/L) = O(p/L) per gj . proportional to input size.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sparser Johnson-Lindenstrauss Transform

Sparse Johnson-Lindenstrauss transform | ;] considers a sparser P() instead:

» Sparse Matrix: For every column of P(), only choose s < k/L elements to be non-zero.
» SJLT takes only O(s- p/L) = O(p/L) per gj . proportional to input size.

p) X g = P:(q x (g1 +-+ P:(/,),/L X (giNp/L = &l
O X = X +ot X =
O O
k/Lxp/L |: k/L
N _p/L O]. :__:' _1

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

SJLT: Alternative Viewpoint

Equivalently, you can think about SJLT as follows:

8il E,-,/

k/L

For each entry of g ;, we select s entries in gj | to add on (or subtract from, depending on £1). I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:

“https://github.com/TRAIS-Lab/sjlt/tree/main

PH, JM, WT, HZ, JM = up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/TRAIS-Lab/sjlt/tree/main

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:
» Per gj cost reduced from O(iLk log p) to O(p/L):

“https://github.com/TRAIS-Lab/sjlt/tree/main

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/TRAIS-Lab/sjlt/tree/main

Computational Complexity of SJLT

SJLT only depends on input dimension p/L:
» Per gj cost reduced from O(iLk log p) to O(p/L):
> In total, from O(n(p + k) log p) to O(np).

“https://github.com/TRAIS-Lab/sjlt/tree/main

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/TRAIS-Lab/sjlt/tree/main

Computational Complexity of SJLT

Projection Time (s)

N

g .
SJLT only depends on input dimension p/L: g //
> Per g; cost reduced from O(iLk log p) to O(p/L): %”’ oy 'i/.:::f*:ifi:i“:"‘i ’
> In total, from O(n(p + k) log p) to O(np). s ‘,k‘-, -
Relative Error
Remark (Potential speedup) L”" k\‘*«,
SJLT exploits input sparsity, each runs only in O(nnz(gj)). "§ k"\"
» Potentially, SJLT can run faster than O(np) in total. iw_z 1\'!'

k

© Gaussian -~ S|LT

p = 131,072 on several sparsity levels®

“https://github.com/TRAIS-Lab/sjlt/tree/main

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://github.com/TRAIS-Lab/sjlt/tree/main

Sub-Linear Compression

It seems like we can't go faster, as we need to read through the input at least?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sub-Linear Compression

It seems like we can't go faster, as we need to read through the input at least?

» Wrong! We can throw out (some) information!

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sub-Linear Compression

It seems like we can't go faster, as we need to read through the input at least?
» Wrong! We can throw out (some) information!

Compression via selecting a few parameters (< masking out most parameters):

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sub-Linear Compression

It seems like we can't go faster, as we need to read through the input at least?
» Wrong! We can throw out (some) information!

Compression via selecting a few parameters (< masking out most parameters):

Instead of “compress everything succinctly,” we select a few parameters to look at. I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Sub-Linear Compression

It seems like we can't go faster, as we need to read through the input at least?
» Wrong! We can throw out (some) information!

Compression via selecting a few parameters (< masking out most parameters):

Instead of “compress everything succinctly,” we select a few parameters to look at. I

> In the literature, people find out that only a few parameters are important for “inference”

> |dea of localization emerges | ; ;]

> Used for task merging, sparsification, etc.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

We call this MASK:

PH, JM, WT, HZ, JM up TDA with GRr September 23, 2025

We call this MASK:

> By neglecting the information, we get a further speedup.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

We call this MASK:

> By neglecting the information, we get a further speedup.
» MASK takes only O(k/L) per g, proportional to output size.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

MASK

We call this MASK:

> By neglecting the information, we get a further speedup.
» MASK takes only O(k/L) per g, proportional to output size.

&gl 8il

k/L

L dp/L

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of MASK

MAsK only depends on output dimension k/L:

PH, JM, WT, HZ, JM = up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of MASK

MAsK only depends on output dimension k/L:

> Per g; cost reduced from O(p/L) to O(k/L):
> In total, from O(np) to O(nk).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of MASK

MAsK only depends on output dimension k/L:

> Per g; cost reduced from O(p/L) to O(k/L):
> In total, from O(np) to O(nk).

We finally achieve sub-linear compression:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of MASK

MAsK only depends on output dimension k/L:

> Per g; cost reduced from O(p/L) to O(k/L):
> In total, from O(np) to O(nk).

We finally achieve sub-linear compression:

> To compress, we don't even need to read through all the input!

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of MASK

MAsK only depends on output dimension k/L:

> Per g; cost reduced from O(p/L) to O(k/L):
> In total, from O(np) to O(nk).

We finally achieve sub-linear compression:

> To compress, we don't even need to read through all the input!

» Complexity is dominated by “outputting” the result.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of MASK

MAsK only depends on output dimension k/L:

» Per gj cost reduced from O(p/L) to O(k/L):
> In total, from O(np) to O(nk).

We finally achieve sub-linear compression:

> To compress, we don't even need to read through all the input!

» Complexity is dominated by “outputting” the result.

This complexity should now be impossible to beat.

Problem

In what cost?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Situation Now

We now have two candidates, SJLT and MASK:

e SJLT - — MASK — s x1

8il Ei,/ 8il

k/L

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Situation Now

We now have two candidates, SJLT and MASK:

e SJLT - — MASK — s x1

8i,l 8il 8il

k/L

Problem (Pros and Cons)

> SJLT: Very good compression guarantees, but cost oc input dimension.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Situation Now

We now have two candidates, SJLT and MASK:

e SJLT - — MASK — s x1

8i,l Ei,/ 8il

k/L

Problem (Pros and Cons)

> SJLT: Very good compression guarantees, but cost oc input dimension.

> MASK: Extremely fast with cost o< output dimension, but will lose a lot of information.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

GRASS: Best of both Worlds

- MASK — s x1

| I | W SJLT

&l Ei,l

k/L

| —td o

First MAASK to a moderate dimension k'/L, then SJLT to the final dimension k/L! I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of GRASS

We term this method as GRASS: Gradient Sparsification and Sparse projection.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of GRASS

We term this method as GRASS: Gradient Sparsification and Sparse projection.

> Sparsification: MASK to an intermediate dimension k’/L with k < k' < p
» Sparse projection: SJLT the sparsified vector of dimension k’/L down to k/L

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of GRASS

We term this method as GRASS: Gradient Sparsification and Sparse projection.

> Sparsification: MASK to an intermediate dimension k’/L with k < k' < p
» Sparse projection: SJLT the sparsified vector of dimension k’/L down to k/L

We see that the compression time per g, consists of:

» MASK: cost o output dimension, O(k’/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of GRASS

We term this method as GRASS: Gradient Sparsification and Sparse projection.

> Sparsification: MASK to an intermediate dimension k’/L with k < k' < p
» Sparse projection: SJLT the sparsified vector of dimension k’/L down to k/L

We see that the compression time per g, consists of:

» MASK: cost o output dimension, O(k’/L)
» SJLT: cost o input dimension, O(k’/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of GRASS

We term this method as GRASS: Gradient Sparsification and Sparse projection.

> Sparsification: MASK to an intermediate dimension k’/L with k < k' < p
» Sparse projection: SJLT the sparsified vector of dimension k’/L down to k/L

We see that the compression time per g, consists of:

» MASK: cost o output dimension, O(k’/L)
» SJLT: cost o input dimension, O(k’/L)
= Together takes O(k’/L+ k'/L) = O(k'/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of GRASS

We term this method as GRASS: Gradient Sparsification and Sparse projection.

> Sparsification: MASK to an intermediate dimension k’/L with k < k' < p
» Sparse projection: SJLT the sparsified vector of dimension k’/L down to k/L

We see that the compression time per g, consists of:

» MASK: cost o output dimension, O(k’/L)
» SJLT: cost o input dimension, O(k’/L)
= Together takes O(k’/L+ k'/L) = O(k'/L)

In total, for all data points and all layers, GRASS takes O(nk’).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: GRASS takes O(nk’) for some k’ such that k < k' < p.
> Storage: compressed vectors O(nk)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: GRASS takes O(nk’) for some k’ such that k < k' < p.
> Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g;:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: GRASS takes O(nk’) for some k’ such that k < k' < p.
> Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g;:

» Computation: inverse-FIM + product O(k®/L? + nk?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together Again

Let's put everything together again, this time with GRASS.

Stage 0: Compute all per-sample gradients g; € R”

» Computation: Forward/Backward passes for vectors O(np)
> Storage: None (immediately processed to next stage in memory)

Stage 1: Compressed g;; € RP/L down to g € R¥/L, giving g; € RX.

» Computation: GRASS takes O(nk’) for some k’ such that k < k' < p.
> Storage: compressed vectors O(nk)

Stage 2: Compute iFVP using g;:

» Computation: inverse-FIM + product O(k®/L? + nk?/L)
> Storage: inverse-FIM O(k?/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: GRASS

Stage 0 Stage 1 Stage 2
vectors Compressed vectors iFVP
Grass®
8i1 8i1
Forward . N 8i GrASS®) =
8i2 8i2
. GraSS®) _ [T
H 8i,l 8i,l
L0 -/ ok /1) Inverse
....... () B nk?
Backward gL GRASS gL q:
O(np) O(nk’) F Fé_,ll
é

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Why Linear Layers?

In modern model architectures:

PH, JM, WT, HZ, JM eedi up TDA with GRASS [Hu+-25] September 23, 2025

Why Linear Layers?

In modern model architectures:

> Linear layers usually contain most of the parameters (since it is dense)

PH, JM, WT, HZ, JM eeding up TDA with GRASS [Hu+25] September 23, 2025

Why Linear Layers?

In modern model architectures:

> Linear layers usually contain most of the parameters (since it is dense)

> Gradient of linear layers has nice structures

PH, JM, WT, HZ, JM up TDA with GRASS [Hu+-25] September 23, 2025

Why Linear Layers?

In modern model architectures:

> Linear layers usually contain most of the parameters (since it is dense)

> Gradient of linear layers has nice structures

Due to the above, many have looked into accelerating linear layers in particular:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Why Linear Layers?

In modern model architectures:

> Linear layers usually contain most of the parameters (since it is dense)

> Gradient of linear layers has nice structures
Due to the above, many have looked into accelerating linear layers in particular:

> K-FAC | |, EK-FAC | |: factorized FIM computation

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Why Linear Layers?

In modern model architectures:

> Linear layers usually contain most of the parameters (since it is dense)

> Gradient of linear layers has nice structures
Due to the above, many have looked into accelerating linear layers in particular:

> K-FAC | |, EK-FAC | |: factorized FIM computation

» Ghost Inner Product [|: allowing “batched” per-sample gradient computation

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Why Linear Layers?

In modern model architectures:

> Linear layers usually contain most of the parameters (since it is dense)

> Gradient of linear layers has nice structures
Due to the above, many have looked into accelerating linear layers in particular:

> K-FAC | |, EK-FAC | |: factorized FIM computation

» Ghost Inner Product [|: allowing “batched” per-sample gradient computation

We will see their fundamental ideas next. Let's first recall some basic facts about linear layers.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient of One Linear Layer

We now take a closer look at linear layers.

PH, JM, WT, HZ, JM = p TDA with GrRASS [Hu+25] September 23, 2025

Gradient of One Linear Layer

We now take a closer look at linear layers.

» Consider a model with only one linear layer (i.e., logistic regression)
> Let the weight be W, with activation o(+)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient of One Linear Layer

We now take a closer look at linear layers.

» Consider a model with only one linear layer (i.e., logistic regression)
> Let the weight be W, with activation o(+)

The forward pass is:

out __ . pred __ out
" =W.z, z =o(z")

PH, JM, WT, HZ, JM

Speeding up TDA with GrRASS [Hu+25]

September 23, 2025

Gradient of One Linear Layer

We now take a closer look at linear layers.

» Consider a model with only one linear layer (i.e., logistic regression)
> Let the weight be W, with activation o(+)

The forward pass is:

out __ . pred __ out
" =W.z, z =o(z")

From chain rule, the backward pass is

al; ot 9z o
ozput - ozPred © ozput - HzPred

3£i WT 86,

0zj 0zPut

©o'(z),

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Gradient of One Linear Layer

Forward Pass Backward Pass
Jout _ pred __ out ol 0y /(out o _ T 9%
"t =W-z, z =o(z") pat = e O 0(ZY), G =W gam
i

: av; i
o — e e

v | Lo " o)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient of One Linear Layer

Forward Pass

Zout — pred _
M =W.z, z =o(z

a(-)

What we actually want is g;:

out)

Zpred

Backward Pass

8[,‘ . 8@,’ / t 6Zi — T 8ei
8zlput - 9 pred OX ¢ (zlpu)’ 8_2, _ aZ?Ut
i
o¢;
o %
[oz 02"

" o)

8i =

ol

8(,‘ 82;”” 83,‘

ow

~ 0z oW

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Gradient of An Linear Layer

Now, let's consider linear layers in a deeper model:

PH, JM, WT, HZ, JM = p TDA with GrRASS [Hu+25] September 23, 2025

Gradient of An Linear Layer

Now, let's consider linear layers in a deeper model:

> Consider a model with L linear layers (i.e., deep MLP)
» For the /™M linear layer, let the weight be W, with activation o(-)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient of An Linear Layer

Now, let's consider linear layers in a deeper model:

> Consider a model with L linear layers (i.e., deep MLP)
» For the /™M linear layer, let the weight be W, with activation o(-)

The forward pass is
out __ in in o out
Zi| = W - Zily Zil+1 = U(Zi,/

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Gradient of An Linear Layer

Now, let's consider linear layers in a deeper model:

> Consider a model with L linear layers (i.e., deep MLP)
» For the /™M linear layer, let the weight be W, with activation o(-)

The forward pass is

out in out
=W -z, Zil+1 = U(Zi,/

From the chain rule, the backward pass is

oty ot 8z:/+1_ ol;

oty Ol a¢;
out - in out in /(t) in W/T out
32 821 1 82 82, 1 821.’ | 0z

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Gradient of An Linear Layer

Forward Pass Backward Pass
ot out o, o /(out 6@-_ T 04
=W,z ,,, IH_I—O'(ZU W—#@O’(zu), 8_2"’“_ ‘/V,azout
=
lei", 0¢;

o4;

in o
Zal_] =

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Materializing Gradients

What we actually want:

ot _ o4 ozt L, o
8= 9w, ~ azer aw, 1Y zem

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Materializing Gradients

What we actually want:

- oL; oL; az,'o;lt_z,-n@) oL;
&i,l = oW, 3z°“t ow, Oz out

We should now see the problem:

Problem

In the computational graph, we never materialize g; .

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Materializing Gradients

What we actually want:

o o Bz,-",“f_z,.n® ol;
B~ 3w, ~ oz aw,

We should now see the problem:

Problem

In the computational graph, we never materialize g; .

Hence, our previous analysis neglects the cost of computing g; /!

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Materializing Gradients

Forward Pass

Materialize
Per-layer Gradient

i o4;
8il = 'I?/ ® 829:/Jt
1

v

E—

Backward Pass

8i,l

1 Compression

gil

PH, JM, WT, HZ, JM

Speeding up TDA with GrRASS [Hu+25]

September 23, 2025

Cost of Materializing Gradients

Assuming W, is roughly square:

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Cost of Materializing Gradients

Assuming W, is roughly square:
> Both zi and 0/; /82°“t are roughly of dimension \/p/L

> z'n ® Oifozz costs O(+/p/) = O(p/L)
> Overall, it'll take O(np)...

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Cost of Materializing Gradients

Assuming W, is roughly square:
> Both z'”, and 0/; /82°“t are roughly of dimension \/p/L

> z'n ® Oifozz costs O(+/p/) = O(p/L)
> Overall, it'll take O(np)...

Even if GRASS takes only O(nk") < O(np), once we materialize gj, it'll take O(np). I

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Cost of Materializing Gradients

Assuming W, is roughly square:
> Both z'”, and 0/; /82°“t are roughly of dimension \/p/L

> z'n ® Oifozz costs O(+/p/) = O(p/L)
> Overall, it'll take O(np)...

Even if GRASS takes only O(nk") < O(np), once we materialize gj, it'll take O(np). I

However, is this really a concern?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Cost of Materializing Gradients

Assuming W, is roughly square:
> Both zi and 0/; /82°“t are roughly of dimension \/p/L

> z'n ® Oifozze costs O(+/p/) = O(p/L)
> Overall, it'll take O(np)...

Even if GRASS takes only O(nk") < O(np), once we materialize gj, it'll take O(np).

However, is this really a concern?

» | mean, how can you compress g;; without materializing it?

> Seems like this O(np) cost will lay in the background and we can't get rid of?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together for Linear Layers

Stage 0 Stage 0.9 Stage 1 Stage 2
vectors Preparation Compressed vectors iFVP
— P(l) oA
81 — 8i1

8i L P2 5
g2 — 82

| Materialize -

! Gradient g1 — &l

: : O(K*/L?) g
] pL) T
8iL — &ilL q:
L] s A
=—1| 6,/
F

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Final Boss: LOGRA

Sadly, the reality is always harsh:

%It is worth noting that from [], the calculation can even be batched.

PH, JM, WT, HZ, JM up TDA with GRASS [Hu+-25] September 23, 2025

Final Boss: LOGRA

Sadly, the reality is always harsh:

Theorem (LOGRA)

There is a gradient compression algorithm that does not require materializing g; | (for MLP layer).>

%It is worth noting that from [], the calculation can even be batched.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Final Boss: LOGRA

Sadly, the reality is always harsh:

Theorem (LOGRA)

There is a gradient compression algorithm that does not require materializing g; | (for MLP layer).>

| \

Intuition
To compress gj |, just compress the components individually:

%It is worth noting that from [], the calculation can even be batched.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Final Boss: LOGRA

Sadly, the reality is always harsh:

Theorem (LOGRA)

There is a gradient compression algorithm that does not require materializing g; | (for MLP layer).>

| A\

Intuition
To compress gj |, just compress the components individually:

Dy (D o pMy. [in e O\ _ (p) . in o . 9%
P 8i,l - (Pm ®Pout) (Z”’®8zﬁ;’t (Pm zl,/)® Pout az;?;lt

%It is worth noting that from [], the calculation can even be batched.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Final Boss: LOGRA

Sadly, the reality is always harsh:

Theorem (LOGRA)

There is a gradient compression algorithm that does not require materializing gj | (for MLP Iayer).

[&]
A\

Intuition
To compress gj |, just compress the components individually:

ol ; ol;
POg, = (P ® PGy (2419 5) (PR -z ® (P,S’Jt 52)

» Allocating k/L equally = target dimension for both is \/k/L

%It is worth noting that from [], the calculation can even be batched.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

As previously seen (LOGRA)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

W | — W
')) :]
il T v/ p/L
k/L |

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of LOGRA

We see that for a linear layer /:

out, We ‘decompose” the projection

» By assuming P() = Pi(nl) & P

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of LOGRA

We see that for a linear layer /:

» By assuming P() = Pi(nl) & P

out, We ‘decompose” the projection
> Let P and P{))

I . :
4t can be any compression algorithm

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of LOGRA

We see that for a linear layer /:

» By assuming P() = Pi(nl) & P

out, We ‘decompose” the projection

> Let Pi(nl) and Pc(,{])t can be any compression algorithm
Say both Pi(nl) and P((,{,)t are the simple RANDOM:

> Pi(nl)z}:‘, and P(S{,)tafi/az;j';t both takes O(v/kp/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of LOGRA

We see that for a linear layer /:

» By assuming P() = Pi(nl) & P

out, We ‘decompose” the projection

> Let Pi(nl) and Pc(,ﬁ)t can be any compression algorithm
Say both Pi(nl) and P((,{,)t are the simple RANDOM:

> Pi(nl)z}:‘, and P(S{,)tafi/az;j';t both takes O(v/kp/L)
> Reconstructing gj via ® takes only O(k/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of LOGRA

We see that for a linear layer /:

» By assuming P() = Pi(nl) & P

out, We ‘decompose” the projection

> Let Pi(nl) and Pc(,ﬁ)t can be any compression algorithm
Say both Pi(nl) and P((,Iu)t are the simple RANDOM:

> Pi(r{)z}:‘, and P(S{,)tafi/az;j';t both takes O(v/kp/L)
> Reconstructing gj via ® takes only O(k/L)
> Per gj cost hence is O(vkp/L+ k/L) = O(v/kp/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Computational Complexity of LOGRA

We see that for a linear layer /:

> By assuming P{) = Pi(,:) ® Pg{,)t we “decompose” the projection

> Let Pi(nl) and Pc(,ﬁ)t can be any compression algorithm
Say both Pi(nl) and P((,Iu)t are the simple RANDOM:

> Pi(r{)z}:‘, and Pg,)tf%/az;j';t both takes O(v/kp/L)
> Reconstructing gj via ® takes only O(k/L)
> Per gj cost hence is O(vkp/L+ k/L) = O(v/kp/L)

Overall, LOGRA only takes O(nykp) < O(np)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: LOGRA

Stage 0 Stage 1 Stage 2
vectors Compressed vectors iFVP
LoGra®) o 1
LoGra® _
Sl s B o
LoGra() _ T[]
: Inverse g
| LoGra®®) > T
HOQ e Y&l q
O(np) O(nv/kp) _|F]
Fied
)

PH, JM, WT, HZ, JM

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Let's summarize the situation a bit. For general layers:

» GRASS takes O(np) + O(nk’) considering the cost of materializing g;
= Fastest gradient compression algorithm so far

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Let's summarize the situation a bit. For general layers:

» GRASS takes O(np) + O(nk’) considering the cost of materializing g;
= Fastest gradient compression algorithm so far

However, for linear layers:

» GRASS takes O(np) + O(nk’), considering the cost of materializing g;
» LOGRA takes O(ny/kp), without materializing g;
= LOGRA beats GRASS by a lot

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Now What?

Let's summarize the situation a bit. For general layers:

» GRASS takes O(np) + O(nk’) considering the cost of materializing g;
= Fastest gradient compression algorithm so far

However, for linear layers:

» GRASS takes O(np) + O(nk’), considering the cost of materializing g;
» LOGRA takes O(ny/kp), without materializing g;
= LOGRA beats GRASS by a lot

Problem
How to beat LOGRA?

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and ng)t with GRASS!

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS [Hu+25] September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and ng)t with GRASS!

> Theoretically, sure! In practice, no.

PH, JM, WT, HZ, JM st p TDA with GrRASS [Hu+25] September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and Pc(,ﬂ)t with GRASS!

> Theoretically, sure! In practice, no.

Problem
Two projection problems are too small (\/p/L — \/k/L, e.g., 4096 — 64):

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and ng)t with GRASS!

> Theoretically, sure! In practice, no.

Two projection problems are too small (\/p/L — \/k/L, e.g., 4096 — 64):
» RANDOM (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and Pg])t with GRASS!

> Theoretically, sure! In practice, no.

Problem

Two projection problems are too small (\/p/L — \/k/L, e.g., 4096 — 64):

» RANDOM (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
MasK is still efficient, problem lies in SJLT s practical implementation:

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and Pg])t with GRASS!

> Theoretically, sure! In practice, no.

Problem

Two projection problems are too small (\/p/L — \/k/L, e.g., 4096 — 64):

» RANDOM (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
MasK is still efficient, problem lies in SJLT s practical implementation:

» Overhead: small problem size suffer...

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(n/) and Pg])t with GRASS!

> Theoretically, sure! In practice, no.

Problem

Two projection problems are too small (\/p/L — \/k/L, e.g., 4096 — 64):

» RANDOM (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
MasK is still efficient, problem lies in SJLT s practical implementation:
» Overhead: small problem size suffer...

» Hash Collision: even slower on small dimensions than on moderate dimensions

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Naive Approach

A naive idea is to simply replace Pi(nl) and Pg])t with GRASS!

> Theoretically, sure! In practice, no.

Two projection problems are too small (\/p/L — \/k/L, e.g., 4096 — 64):

» RANDOM (i.e., matrix multiplication) is extremely fast (PyTorch low-level optimization)
MasK is still efficient, problem lies in SJLT s practical implementation:
» Overhead: small problem size suffer...

» Hash Collision: even slower on small dimensions than on moderate dimensions

Apply SJLT to a moderate dimension!

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

FACTGRASS

Exploiting this intuition, we propose FACTGRASS: Factorized version of GRASS:

PH, JM, WT, HZ, JM =i p TDA with GrRASS [Hu+25] September 23, 2025

FACTGRASS

Exploiting this intuition, we propose FACTGRASS: Factorized version of GRASS:
Forward Pass Backward Pass

7 I
in t ozin ¢,
il 1A Mask ! I ozr

X W,
D' Mask —‘

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

FACTGRASS

We see that FACTGRASS for one gj ; involves:

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

FACTGRASS

We see that FACTGRASS for one gj ; involves:

1. Sparsification: MASK both factors of g;; to \/k’/L with k < k' < p
2. Reconstruction: construct the “sparsified gradient” of dimension k’/L

3. Sparse projection: SJLT the sparsified gradient of dimension k’/L down to k/L

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

FACTGRASS

We see that FACTGRASS for one gj ; involves:

1. Sparsification: MASK both factors of g;; to \/k’/L with k < k' < p
2. Reconstruction: construct the “sparsified gradient” of dimension k’/L

3. Sparse projection: SJLT the sparsified gradient of dimension k’/L down to k/L

We see that the compression time per g;; consists of:

1. Two MaSK from /p/L to \/K'/L: O(\/k'/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

FACTGRASS

We see that FACTGRASS for one gj ; involves:

1. Sparsification: MASK both factors of g;; to \/k’/L with k < k' < p
2. Reconstruction: construct the “sparsified gradient” of dimension k’/L

3. Sparse projection: SJLT the sparsified gradient of dimension k’/L down to k/L

We see that the compression time per g;; consists of:

1. Two MaSK from /p/L to \/K'/L: O(\/k'/L)

2. Tensor product between two vectors of size O(\/k’/L): O(k'/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

FACTGRASS

We see that FACTGRASS for one gj ; involves:

1. Sparsification: MASK both factors of g;; to \/k’/L with k < k' < p
2. Reconstruction: construct the “sparsified gradient” of dimension k’/L
3. Sparse projection: SJLT the sparsified gradient of dimension k’/L down to k/L

We see that the compression time per g;; consists of:

1. Two Mask from /p/L to \/k'/L: O(\/K' /L)

2. Tensor product between two vectors of size O(+/k’/L): O(k"/L)
3. SJLT from O(k’/L) to O(k/L): O(k'/L)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

FACTGRASS

We see that FACTGRASS for one gj ; involves:

1. Sparsification: MASK both factors of g;; to \/k’/L with k < k' < p
2. Reconstruction: construct the “sparsified gradient” of dimension k’/L

3. Sparse projection: SJLT the sparsified gradient of dimension k’/L down to k/L

We see that the compression time per g;; consists of:

1. Two MASK from \/p/L to \/k'/L: O(\/k'/L)
2. Tensor product between two vectors of size O(\/k’/L): O(k'/L)
3. SJLT from O(k’/L) to O(k/L): O(k'/L)

Overall, FACTGRASS takes O(nk’), same as GRASS, but without materializing g; !

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Putting Everything Together: FACTGRASS

Stage 0 Stage 1 Stage 2
vectors Compressed vectors iFVP
FACTGRASS®) . M
> 8i1
FACTGRASS®® _
X 8i2
FAcTGRASS() _ [7]
— > &il
: O(k3/12?) Inverse =
FactGrass®) . L
> 8i,L .I:

-1
-1 F@,I

O(np) O(nk)

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25]

Summary

We summarize the results in the following:

PH, JM, WT, HZ, JM eedi up TDA with GRASS [Hu+-25] September 23, 2025

We summarize the results in the following:

Theorem (GRASS & FACTGRASS [Hu+25])

There is a sublinear compression-based influence function algorithm with an overhead of

O(nk'), where k < k' < p.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

We summarize the results in the following:

Theorem (GRASS & FACTGRASS [Hu+25])

There is a sublinear compression-based influence function algorithm with an overhead of
O(nk'), where k < k' < p.

Moreover, this extends to linear layers, where layer-wise gradients are never materialized.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

We summarize the results in the following:

Theorem (GRASS & FACTGRASS [Hu+25])

There is a sublinear compression-based influence function algorithm with an overhead of
O(nk'), where k < k' < p.

Moreover, this extends to linear layers, where layer-wise gradients are never materialized.

Compared to LOGRA which takes O(n\/kp), FACTGRASS is faster when

nk' < n\/kp < k' < \/kp.

Let k' = ck, then above is equivalent to ck < \/kp < ¢ < \/p/k.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+25] September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Experimental Setup

We consider the following setups:

> experiment on TRAK and influence function

> focus on speed and accuracy of our method
Quantitative Study: Small model and datasets

» Accuracy: Able to measure LDS scores

» Efficiency: Compare wall-time difference for projection
Qualitative Study: Large model and datasets

» Accuracy: Case study on the most influential data points
» Efficiency: Focus on throughput

PH, JM, WT, HZ, JM

Speeding up TDA with GRASS [Hu+-25]

September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Quantitative Study

Sparsification Sparse Projection Baselines
MASKg SJLT FJILT RANDOM
k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192
LDS 0.3803 0.4054 0.4318 0.4171 0.4280 0.4357 0.4146 0.4359 0.4347 0.4101 0.4253 0.4346
Time (s) 0.1517 0.1458 0.1501 0.4919 0.5172 0.4754 0.8997 1.4341 2.4387 3.0806 5.5421 10.8355
Table: MLP with MNIST on TRAK.
Sparsification Sparse Projection GRASS Baseline
MASKk SJLTk SJLTk o} MASK4kmaX FJLTk
k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192
LDS 0.3690 0.4116 0.4236 0.4131 0.4499 0.4747 0.4123 0.4357 0.4545 0.4157 0.4497 0.4753
Time (s) 0.1026 0.1074 0.1296 12.3590 12.2393 17.4836 0.3652 0.3648 0.3993 31.5491 48.1669 81.9322

Table: ResNet9 with CIFAR2 on TRAK.

PH, JM, WT, HZ, JM

Speeding up TDA with G

S [Hu+-25]

September 23, 2025

Quantitative Study

Sparsification Sparse Projection GRASS Baseline
MASKg SJLT SJLTy o MASK64kmax FJLT
k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.1281 0.1456 0.1469 0.3062 0.3533 0.3861 0.2840 0.3242 0.3413 0.2907 0.3585 0.4011
Time (s) 0.5341 0.5067 0.5179 21.6460 21.1881 21.3192 2.6934 2.6071 2.7202 100.8136 156.0613 269.9093

Table: MusicTransformer with MAESTRO on TRAK.

Sparsification Sparse Projection FACTGRASS Baseline (LOGRA)
MASK\/;®\/E SJLT\/E@)\/E SJLT\/EzOMASKZﬂ@z\/E RANDOM\/E@/;
k (= k/L) 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096
LDS 0.1034 0.1479 0.2391 0.1240 0.1897 0.2389 0.1126 0.1784 0.2360 0.1188 0.1818 0.2338
Time (s) 5.4933 5.3643 5.6385 132.5404 133.4029 136.5163 6.5790 7.4161 6.3075 20.4839 20.9835 22.2157

Table: GPT2-small with WikiText on (block diagonal FIM) influence function.

PH, JM, WT, HZ, JM Speeding up TDA with GrRASS 2 September 23, 2025

Table of Content

PH, JM, WT, HZ, JM ing D i R September 23, 2025

Qualitative Study

Next, we compare FACTGRASS and LOGRA on billion-scale model and dataset

Compress iHVP
k (= k/L) 256 1024 4096 256 1024 4096
LOGRA 27,202 27255 26,863 7,307 7,478 7,367
FACTGRASS 72,218 72,684 73,811 8,584 8,594 8,681

Table: Throughput (tokens/s) for Llama-3.1-8B-Instruct on (block-diagonal FIM) influence function.

In terms of gradient compression, FACTGRASS outperforms LOGRA by 160%.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

Qualitative Study

o

2 To improve data privacy,

To improve data privacy, the European Union has implemented the

General Data Protection Regulation (GDPR). ...

Data Protection Principles

The GDPR sets out six data protection principles...

¢ Lawfulness, fairness, and transparency: Businesses must process
personal data in a way that is lawful, fair, and transparent. ...

« Storage limitation: Businesses must not store personal data for
longer than necessary. ...

Data Subject Rights

The GDPR gives individuals a range of rights when it comes to their

personal data. These rights include:

¢ Right to access: Individuals have the right to access their per-
sonal data and obtain information about how it is being processed.

* Right to erasure: Individuals have the right to have their personal
data deleted if it is no longer necessary for the purposes for which

it was collected. ... ﬁ

Speeding up TDA with G

W

The fact of registration and authorization of users on Sputnik web-
sites via users’ account or accounts on social networks indicates
acceptance of these rules.

Users are obliged abide by national and international laws. ... The
administration has the right to delete comments made in languages
other than the language of the majority of the websites ...

Influential Data

s violates privacy, distributes personal data of third parties without
their consent or violates privacy of correspondence; ...

¢ pursues commercial objectives, contains improper advertising un-
lawful political advertisement or links to other online resources ...

The administration has the right to block a user’s access to the page

or delete a user's account without notice if the user is in violation

of these rules or if behavior indicating said violation is detected.

If the moderators deem it possible to restore the account/unlock

access, it will be done. In the case of repeated violations of the rules

above resulting in a second block of a user account, access cannot

be restored. ...

September 23, 2025

Q&A Timel

Thanks! Ask anything you want!

PH, JM, WT, HZ, JM eedi up TDA with GRASS [Hu+-25] September 23, 2025

References |

[ABH17]

[Cho+24]

[DKS10]
[Gro+23]

[He+25]

[HNM19]

[Hu+25]

Naman Agarwal, Brian Bullins, and Elad Hazan. “Second-order stochastic optimization for machine learning
in linear time". In: Journal of Machine Learning Research 18.116 (2017), pp. 1-40.

Sang Keun Choe et al. What Is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence
Functions. May 22, 2024. bor: 10.48550/arXiv.2405.13954. arXiv: 2405.13954 [cs]. URL:
http://arxiv.org/abs/2405.13954 (visited on 09/14/2024).

Anirban Dasgupta, Ravi Kumar, and Tamas Sarlés. A sparse johnson: Lindenstrauss transform”. |n:
Proceedings of the forty-second ACM symposium on Theory of computing. 2010, pp. 341-350.

Roger Grosse et al. "Studying large language model generalization with influence functions”. In: arXiv
preprint arXiv:2308.03296 (2023).

Yifei He et al. “Localize-and-Stitch: Efficient Model Merging via Sparse Task Arithmetic". |n: Transactions
on Machine Learning Research (2025). 1ssn: 2835-8856. URL:
https://openreview.net/forum?id=9CWU801i86d.

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. “Data cleansing for models trained with SGD”. In:
Advances in Neural Information Processing Systems 32 (2019).

Pingbang Hu et al. “GraSS: Scalable Influence Function with Sparse Gradient Compression”. |n: Advances
in Neural Information Processing Systems. 2025.

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://doi.org/10.48550/arXiv.2405.13954
https://arxiv.org/abs/2405.13954
http://arxiv.org/abs/2405.13954
https://openreview.net/forum?id=9CWU8Oi86d

References |l

[KL17]
[KN14]

[Kwo+24]

[MG15]

[Par+23]

[Sch+22]

[Wan+-24]

Pang Wei Koh and Percy Liang. "Understanding black-box predictions via influence functions”. |1
International conference on machine learning. PMLR. 2017, pp. 1885-1894.

Daniel M Kane and Jelani Nelson. “Sparser johnson-lindenstrauss transforms”. |n: Journal of the ACM
(JACM) 61.1 (2014), pp. 1-23.

Yongchan Kwon et al. “Datalnf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion
Models". In: The Twelfth International Conference on Learning Representations. 2024, URL:
https://openreview.net/forum?id=9m02ib92Wz.

James Martens and Roger Grosse. "Optimizing Neural Networks with Kronecker-factored Approximate
Curvature”. In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by

Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR,
July 2015, pp. 2408-2417. urL: https://proceedings.mlr.press/v37/martens15.html.

Sung Min Park et al. "TRAK: Attributing Model Behavior at Scale”. |1n: International Conference on
Machine Learning. PMLR. 2023, pp. 27074-27113.

Andrea Schioppa et al. “Scaling Up Influence Functions”. |n: Proceedings of the AAAI Conference on
Artificial Intelligence 36.8 (June 2022), pp. 8179-8186. por: 10.1609/aaai.v36i8.20791. URrL:
https://ojs.aaai.org/index.php/AAAI/article/view/20791.

Ke Wang et al. “Localizing task information for improved model merging and compression”. In: arXiv
preprint arXiv:2405.07813 (2024).

PH, JM, WT, HZ, JM Speeding up TDA with GRASS [Hu+-25] September 23, 2025

https://openreview.net/forum?id=9m02ib92Wz
https://proceedings.mlr.press/v37/martens15.html
https://doi.org/10.1609/aaai.v36i8.20791
https://ojs.aaai.org/index.php/AAAI/article/view/20791

References ||

[Wan+25a]

[Wan+25b]

[Woj+16]

[Yad+23]

Jiachen T Wang et al. “"GREATS: Online Selection of High-Quality Data for LLM Training in Every
Iteration”. In: Advances in Neural Information Processing Systems 37 (2025), pp. 131197-131223.

Jiachen T. Wang et al. “Capturing the Temporal Dependence of Training Data Influence”. In: The
Thirteenth International Conference on Learning Representations. 2025. URL:
https://openreview.net/forum?id=uHLgDEgiS5.

Mike Wojnowicz et al. "“Influence Sketching”: Finding Influential Samples in Large-Scale Regressions”. |1:
2016 IEEE International Conference on Big Data (Big Data). 2016 |EEE International Conference on Big
Data (Big Data). Washington DC,USA: IEEE, Dec. 2016, pp. 3601-3612. 1sBN: 978-1-4673-9005-7. poI:

10.1109/BigData.2016.7841024. UkL: http://ieeexplore.ieee.org/document/7841024/ (visited on
12/06/2023).

Prateek Yadav et al. “Ties-merging: Resolving interference when merging models”. |n: Advances in Neural
Information Processing Systems 36 (2023), pp. 7093-7115.

PH, JM, WT, HZ, JM up TDA with GRASS [Hu+-25] September 23, 2025

https://openreview.net/forum?id=uHLgDEgiS5
https://doi.org/10.1109/BigData.2016.7841024
http://ieeexplore.ieee.org/document/7841024/

	Introduction
	Overview
	Recap on Influence Function
	Computing Influence Function

	Accelerating iHVP
	Small Detour
	Hessian Approximation
	Gradient Compression

	State-of-the-Art Gradient Compression
	GraSS
	Linear Layers
	LoGra
	Factorized GraSS

	Experiments
	Experimental Setup
	Quantitative Study
	Qualitative Study

	References
	References

